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Abstract

It has been an open problem to find the Moore-Penrose inverses of the incidence,
Laplacian, and signless Laplacian matrices of families of graphs except trees and uni-
cyclic graphs. Since the inverse formulas for an odd unicyclic graph and an even
unicyclic graph are quite different, we consider wheel graphs as they are formed from
odd or even cycles. In this article we solve the open problem for wheel graphs. This
work has an interesting connection to inverses of circulant matrices.

1 Introduction

Let G be a simple graph on n vertices 1, 2, . . . , n and m edges e1, e2, . . . , em with the adja-
cency matrix A and the degree matrix D. The Laplacian matrix L and signless Laplacian
matrix Q of G are defined as L = D − A and Q = D + A respectively. The vertex-edge
incidence matrix M of G is the n ×m matrix whose (i, j)-entry is 1 if vertex i is incident
with edge ej and 0 otherwise. It is well known that Q = MMT . An oriented incidence
matrix N of G is the n×m matrix obtained from M by changing one of the two 1s in each
column of M to−1. It is well known that L = NNT for any oriented incidence matrix N of G.

Circulant matrices play a crucial role in this article. A circulant matrix of order n is an
n× n matrix of the form 

c0 c1 c2 · · · cn−1
cn−1 c0 c1 · · · cn−2
cn−2 cn−1 c0 · · · cn−3

...
...

...
. . .

...
c1 c2 c3 · · · c0


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which is denoted by circ(c0, c1, . . . , cn−1). For example, the incidence matrix of a cycle can be
written as circ(1, 0, . . . , 0, 1). The following are well known properties of circulant matrices:

Proposition 1.1. [10]

(a) Circulant matrices commute under multiplication.

(b) The inverse of an invertible circulant matrix is a circulant matrix.

(c) The inverse of an invertible symmetric circulant matrix is a symmetric circulant matrix.

(d) If s is the row sum of an invertible circulant matrix C, then 1
s

is the row sum of C−1.

The Moore-Penrose inverse of an m× n real matrix A, denoted by A+, is the n×m real
matrix that satisfies the following equations [5]:

AA+A = A,A+AA+ = A+, (AA+)T = AA+, (A+A)T = A+A.

When A is invertible, A+ = A−1.
In 1965, Ijira first studied the Moore-Penrose inverse of the oriented incidence matrix of a
graph in [11]. The same was done by Bapat for the Laplacian and edge-Laplacian of trees
[3]. Further research studied the same topic for different graphs such as distance regular
graphs [1, 4]. With the emergence of research on the signless Laplacian of graphs [6, 7],
Hessert and Mallik studied the Moore-Penrose inverses of the incidence matrix and signless
Laplacian of a tree and an unicyclic graph in [8, 9]. It has been an open problem to find
the Moore-Penrose inverses of the incidence, Laplacian, and signless Laplacian matrices of
other families of graphs. Note that the inverse formulas for an odd unicyclic graph and an
even unicyclic graph are quite different [9]. Since wheel graphs are formed from odd or even
cycles, they deserve to be investigated first for the inverse formulas of associated matrices.
Recently an inverse formula for the distance matrix of a wheel graph has been studied by
Balaji et al. [2]. In section 2, we study the Moore-Penrose inverses of the incidence and
signless Laplacian matrices of the wheel graph on n vertices. In section 3, we investigate the
Moore-Penrose inverses of the oriented incidence and Laplacian matrices of the wheel graph
on n vertices.

2 Incidence and signless Laplacian matrices

The wheel graph on n ≥ 4 vertices, denoted by Wn, is obtained from an isolated vertex v
and a cycle on n− 1 vertices by joining each vertex of the cycle to v. In this section first we
study the Moore-Penrose inverse of the incidence matrix of Wn. We denote the zero vector
and all-ones vector by 0 and 1 respectively. The n× n identity matrix and all-ones matrix
are denoted by In and Jn respectively.
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Theorem 2.1. Let Wn be the wheel graph on n vertices with the incidence matrix M given
by

M =

[
1T 0T

In−1 C

]
,

where C is the circulant matrix circ(1, 0, ..., 0, 1) of order n− 1. The Moore-Penrose inverse
of M is given by

M+ =
1

2(n− 1)

[
21 X
−1 Y

]
,

where X = 2(CCT + In−1)
−1 [(n− 1)In−1 − Jn−1] and Y = Jn−1 + CTX.

Proof. First note that
CCT + In−1 = circ(3, 1, 0, . . . , 0, 1)

is strictly diagonally dominant and consequently invertible. Let

H =
1

2(n− 1)

[
21 X
−1 Y

]
,

where X = 2(CCT + In−1)
−1 [(n− 1)In−1 − Jn−1] and Y = Jn−1 + CTX. We show that

H = M+.

MH =
1

2(n− 1)

[
1T 0T

In−1 C

] [
21 X
−1 Y

]
=

1

2(n− 1)

[
21T1 1TX

2In−11− C1 In−1X + CY

]
=

1

2(n− 1)

[
2(n− 1) 1TX
21− 21 X + CY

]
=

1

2(n− 1)

[
2(n− 1) 1TX

0 X + CY

]
(1)

Since the row sum of CCT + In−1 = circ(3, 1, 0, . . . , 0, 1) is 5, 1T (CCT + In−1)
−1 = 1

5
1T

by Proposition 1.1. Then

1TX = 21T (CCT + In−1)
−1 [(n− 1)In−1 − Jn−1]

= 2

(
1

5
1T

)
[(n− 1)In−1 − Jn−1]

=
2

5
[(n− 1)1T − (n− 1)1T ]

= 0T .
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Now we simplify X + CY as follows:

X + CY = X + C(Jn−1 + CTX)

= X + CJn−1 + CCTX

= (In−1 + CCT )X + CJn−1

= 2(CCT + In−1)(CCT + In−1)
−1[(n− 1)In−1 − Jn−1] + 2Jn−1

= 2(n− 1)In−1 − 2Jn−1 + 2Jn−1

= 2(n− 1)In−1

Putting 1TX = 0T and X + CY = 2(n− 1)In−1 in (1), we get

MH =
1

2(n− 1)

[
2(n− 1) 0T

0 2(n− 1)In−1

]
= In.

Since MH = In, we have MHM = M , HMH = H, and (MH)T = MH. It remains to
show that HM is symmetric.

HM =
1

2(n− 1)

[
21 X
−1 Y

] [
1T 0
In−1 C

]
=

1

2(n− 1)

[
211T + X XC
−11T + Y Y C

]
=

1

2(n− 1)

[
2Jn−1 + X XC
−Jn−1 + Y Y C

]
=

1

2(n− 1)

[
2Jn−1 + X XC

CTX Jn−1C + CTXC

]
(since Y = Jn−1 + CTX)

=
1

2(n− 1)

[
2Jn−1 + X XC

CTX 2Jn−1 + CTXC

]
(since Jn−1C = 2Jn−1)

To show HM is symmetric, it suffices to show that X is symmetric. Note that CCT +
In−1 is a symmetric circulant matrix and so is (CCT + In−1)

−1 by Proposition 1.1. Also
(n− 1)In−1 − Jn−1 is a symmetric circulant matrix. Then so is

X = 2(CCT + In−1)
−1 [(n− 1)In−1 − Jn−1]

as a product of two symmetric circulant matrices.

Thus H = M+.

Corollary 2.2. In Theorem 2.1, X is a symmetric circulant matrix and Y is a circulant
matrix.

Example 2.3. Consider W6 with vertex and edge labeling given in Figure 1 and its incidence
matrix M . The Moore-Penrose inverse M+ of M is as follows:
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Figure 1: W6, the wheel graph on 6 vertices

M =


1 1 1 1 1 0 0 0 0 0
1 0 0 0 0 1 0 0 0 1
0 1 0 0 0 1 1 0 0 0
0 0 1 0 0 0 1 1 0 0
0 0 0 1 0 0 0 1 1 0
0 0 0 0 1 0 0 0 1 1

 , M+ =
1

10



2 4 −2 0 0 −2
2 −2 4 −2 0 0
2 0 −2 4 −2 0
2 0 0 −2 4 −2
2 −2 0 0 −2 4
−1 3 3 −1 1 −1
−1 −1 3 3 −1 1
−1 1 −1 3 3 −1
−1 −1 1 −1 3 3
−1 3 −1 1 −1 3


.

Theorem 2.1 does not provide an explicit formula for each entry of M+. To do that, we
use the following result.

Theorem 2.4. [10, Theorem 1] Let n > 3 be an integer and a, b, c real numbers such that
a2 > 4bc and b 6= 0. Except when a + b + c = 0, or n is even and a = b + c,

[circ(a, b, 0, 0, ..., 0, c)]−1 = circ(a0, a1, . . . , an−1),

where

aj =
z1z2

b(z1 − z2)

(
zj1

1− zn1
− zj2

1− zn2

)
for z1, z2 =

(
−a±

√
a2 − 4bc

)
/2c.

Corollary 2.5. The inverse of the circulant matrix circ(3, 1, 0, ..., 0, 1) of order n > 3 is
given by

[circ(3, 1, 0, ..., 0, 1)]−1 = circ(a0, a1, . . . , an−1),
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where

aj =
2n−j
√

5

[
(−3 +

√
5)j

2n − (−3 +
√

5)n
− (−3−

√
5)j

2n − (−3−
√

5)n

]
, j = 0, 1, . . . , n− 1.

Proof. Here a = 3 and b = c = 1. By Theorem 2.4,

aj =
z1z2

b(z1 − z2)

(
zj1

1− zn1
− zj2

1− zn2

)
where z1, z2 = (−3±

√
32 − 4 · 1 · 1)/(2 · 1) = (−3±

√
5)/2. Then

aj =

(
−3+

√
5

2

)(
−3−

√
5

2

)
1
(
−3+

√
5

2
− −3−

√
5

2

) [ (−3+
√
5)j

2j

1− (−3+
√
5)n

2n

−
(−3−

√
5)j

2j

1− (−3−
√
5)n

2n

]

=
9−5
4

2
√
5

2

 (−3 +
√

5)j

2j
(

2n−(−3+
√
5)n

2n

) − (−3−
√

5)j

2j
(

2n−(−3−
√
5)n

2n

)


=
1√
5

[
2n−j(−3 +

√
5)j

2n − (−3 +
√

5)n
− 2n−j(−3−

√
5)j

2n − (−3−
√

5)n

]

=
2n−j
√

5

[
(−3 +

√
5)j

2n − (−3 +
√

5)n
− (−3−

√
5)j

2n − (−3−
√

5)n

]
.

Corollary 2.6. Matrix X in Theorem 2.1 is given by X = circ(b0, b1, . . . , bn−2) where

bj = −2

5
+

2n−j(n− 1)√
5

[
(−3 +

√
5)j

2n−1 − (−3 +
√

5)n−1
− (−3−

√
5)j

2n−1 − (−3−
√

5)n−1

]
,

for j = 0, 1, . . . , n− 2.

Proof. Recall CCT + In−1 = circ(3, 1, 0, . . . , 0, 1). Since the row sum of CCT + In−1 is 5,
(CCT + In−1)

−1Jn−1 = 1
5
Jn−1 by Proposition 1.1. Then

X = 2(CCT + In−1)
−1[(n− 1)In−1 − Jn−1]

= 2[circ(3, 1, 0, . . . , 0, 1)]−1[(n− 1)In−1 − Jn−1]

= 2(n− 1)[circ(3, 1, 0, . . . , 0, 1)]−1 − 2[circ(3, 1, 0, . . . , 0, 1)]−1Jn−1

= 2(n− 1)[circ(3, 1, 0, . . . , 0, 1)]−1 − 2

(
1

5
Jn−1

)
= −2

5
Jn−1 + 2(n− 1)[circ(3, 1, 0, . . . , 0, 1)]−1.
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By the preceding corollary, X = circ(b0, b1, ..., bn−2) where

bj = −2

5
+ 2(n− 1)

2n−1−j
√

5

[
(−3 +

√
5)j

2n−1 − (−3 +
√

5)n−1
− (−3−

√
5)j

2n−1 − (−3−
√

5)n−1

]

= −2

5
+

2n−j(n− 1)√
5

[
(−3 +

√
5)j

2n−1 − (−3 +
√

5)n−1
− (−3−

√
5)j

2n−1 − (−3−
√

5)n−1

]
.

Corollary 2.7. Matrix Y in Theorem 2.1 is given by Y = circ(d0, d1, . . . , dn−2) where

d0 =
1

5
+

4(n− 1)√
5

[
2n−2 + (−3 +

√
5)n−2

2n−1 − (−3 +
√

5)n−1
− 2n−2 + (−3−

√
5)n−2

2n−1 − (−3−
√

5)n−1

]

and for j = 1, 2, . . . , n− 2,

dj =
1

5
+

2n+1−j(n− 1)

5 +
√

5

[
2(−3 +

√
5)j−1

2n−1 − (−3 +
√

5)n−1
− (−3−

√
5)j

2n−1 − (−3−
√

5)n−1

]
.

Proof. Consider X = circ(b0, b1, . . . , bn−2) in Corollary 2.6. Then

Y = Jn−1 + CTX

= Jn−1 + circ(bn−2 + b0, b0 + b1, ..., bn−3 + bn−2)

= circ(1 + bn−2 + b0, 1 + b0 + b1, ..., 1 + bn−3 + bn−2).

Then Y = circ(d0, d1, . . . , dn−2) where

dj = 1 + bj + bj−1, j = 0, 1, . . . , n− 2 (where b−1 = bn−2).

d0 = 1 + bn−2 + b0

= 1− 2

5
+

2n−(n−2)(n− 1)√
5

[
(−3 +

√
5)n−2

2n−1 − (−3 +
√

5)n−1
− (−3−

√
5)n−2

2n−1 − (−3−
√

5)n−1

]

−2

5
+

2n(n− 1)√
5

[
1

2n−1 − (−3 +
√

5)n−1
− 1

2n−1 − (−3−
√

5)n−1

]
=

1

5
+

4(n− 1)√
5

[
(−3 +

√
5)n−2 + 2n−2

2n−1 − (−3 +
√

5)n−1
− (−3−

√
5)n−2 + 2n−2

2n−1 − (−3−
√

5)n−1

]

7
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For j = 1, 2, . . . , n− 2,

dj = 1 + bj + bj−1

= 1 +
2n−j(n− 1)√

5

[
(−3 +

√
5)j

2n−1 − (−3 +
√

5)n−1
− (−3−

√
5)j

2n−1 − (−3−
√

5)n−1

]
− 2

5

+
2n−j+1(n− 1)√

5

[
(−3 +

√
5)j−1

2n−1 − (−3 +
√

5)n−1
− (−3−

√
5)j−1

2n−1 − (−3−
√

5)n−1

]
− 2

5

=
1

5
+

2n−j(n− 1)√
5

[
(−3 +

√
5)j

2n−1 − (−3 +
√

5)n−1
− (−3−

√
5)j

2n−1 − (−3−
√

5)n−1

]

+
2n−j(n− 1)√

5

[
2(−3 +

√
5)j−1

2n−1 − (−3 +
√

5)n−1
− 2(−3−

√
5)j−1

2n−1 − (−3−
√

5)n−1

]

=
1

5
+

2n−j(n− 1)√
5

[
(−3 +

√
5 + 2)(−3 +

√
5)j−1

2n−1 − (−3 +
√

5)n−1
− (−3−

√
5 + 2)(−3−

√
5)j−1

2n−1 − (−3−
√

5)n−1

]

=
1

5
+

2n−j(n− 1)√
5

[
(−1 +

√
5)(−3 +

√
5)j−1

2n−1 − (−3 +
√

5)n−1
+

(1 +
√

5)(−3−
√

5)j−1

2n−1 − (−3−
√

5)n−1

]

=
1

5
+

2n−j(n− 1)√
5(1 +

√
5)

[
(1 +

√
5)(−1 +

√
5)(−3 +

√
5)j−1

2n−1 − (−3 +
√

5)n−1
+

(1 +
√

5)2(−3−
√

5)j−1

2n−1 − (−3−
√

5)n−1

]

=
1

5
+

2n−j(n− 1)√
5 + 5

[
4(−3 +

√
5)j−1

2n−1 − (−3 +
√

5)n−1
+

2(3 +
√

5)(−3−
√

5)j−1

2n−1 − (−3−
√

5)n−1

]

=
1

5
+

2n+1−j(n− 1)

5 +
√

5

[
2(−3 +

√
5)j−1

2n−1 − (−3 +
√

5)n−1
− (−3−

√
5)j

2n−1 − (−3−
√

5)n−1

]
.

Now we study the Moore-Penrose inverse of the signless Laplacian matrix of Wn.

Theorem 2.8. Let Wn be the wheel graph on n vertices with the signless Laplacian matrix
Q given by

Q =

[
n− 1 1T

1 B

]
,

where B is the circulant matrix circ(3, 1, 0, ..., 0, 1) of order n−1. The Moore-Penrose inverse
of Q is given by

Q+ =
1

4(n− 1)

[
5 −1T

−1 Jn−1 + 2X

]
,

where X = 2(CCT + In−1)
−1 [(n− 1)In−1 − Jn−1] = circ(b0, b1, . . . , bn−1) with

bj = −2

5
+

2n−j(n− 1)√
5

[
(−3 +

√
5)j

2n−1 − (−3 +
√

5)n−1
− (−3−

√
5)j

2n−1 − (−3−
√

5)n−1

]
, j = 0, 1, . . . , n−1.

8
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Proof. First note that Q = MMT for the incidence matrix M of the form

M =

[
1T 0T

In−1 C

]
,

where C is the circulant matrix circ(1, 0, ..., 0, 1) of order n− 1. By Theorem 2.1,

M+ =
1

2(n− 1)

[
21 X
−1 Y

]
,

where X = 2(CCT + In−1)
−1 [(n− 1)In−1 − Jn−1] and Y = Jn−1 + CTX.

Q+ = (MMT )+

= (M+)TM+

=
1

4(n− 1)2

[
21T −1T

XT Y T

] [
21 X
−1 Y

]
=

1

4(n− 1)2

[
21T −1T

X Y T

] [
21 X
−1 Y

]
(since X is symmetric)

=
1

4(n− 1)2

[
41T1 + 1T1 21TX − 1TY
2X1− Y T1 X2 + Y TY

]
=

1

4(n− 1)2

[
4(n− 1) + (n− 1) 21TX − 1T [Jn−1 + CTX]

2X1− [Jn−1 + XC]1 X2 + Y TY

]
=

1

4(n− 1)2

[
5(n− 1) 21TX − (n− 1)1T − 21TX

2X1− (n− 1)1− 2X1 X2 + Y TY

]
=

1

4(n− 1)2

[
5(n− 1) −(n− 1)1T

−(n− 1)1 X2 + Y TY

]
(2)

Now we simplify X2 + Y TY as follows:

X2 + Y TY

= X2 + (Jn−1 + CTX)T (Jn−1 + CTX)

= X2 + (Jn−1 + XC)(Jn−1 + CTX) (since X is symmetric)

= X2 + J2
n−1 + Jn−1C

TX + XCJn−1 + XCCTX

=
(
XIn−1X + XCCTX

)
+ J2

n−1 + Jn−1XCT + XJn−1C

= X(In−1 + CCT )X + (n− 1)Jn−1 (since Jn−1X = XJn−1 = 0)

= 2X[(n− 1)In−1 − Jn−1] + (n− 1)Jn−1 (since (CCT + In−1)X = 2 [(n− 1)In−1 − Jn−1])

= (n− 1)2X − 2XJn−1 + (n− 1)Jn−1 (since XJn−1 = 0)

= (n− 1)[Jn−1 + 2X]

9
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Plugging X2 + Y TY = (n− 1)[Jn−1 + 2X] in (2), we get

Q+ =
1

4(n− 1)2

[
5(n− 1) −(n− 1)1T

−(n− 1)1 (n− 1)[Jn−1 + 2X]

]
=

1

4(n− 1)

[
5 −1T

−1 Jn−1 + 2X

]
,

where X is given by Corollary 2.6.

Example 2.9. Consider W6 with vertex and edge labeling given in Figure 1 and its signless
Laplacian matrix Q. The Moore-Penrose inverse Q+ of Q is as follows:

Q =


5 1 1 1 1 1
1 3 1 0 0 1
1 1 3 1 0 0
1 0 1 3 1 0
1 0 0 1 3 1
1 1 0 0 1 3

 , Q+ =
1

20


5 −1 −1 −1 −1 −1
−1 9 −3 1 1 −3
−1 −3 9 −3 1 1
−1 1 −3 9 −3 1
−1 1 1 −3 9 −3
−1 −3 1 1 −3 9

 .

3 Oriented incidence and Laplacian matrices

Theorem 3.1. Let Wn be the wheel graph on n vertices with the oriented incidence matrix
N given by

N =

[
1T 0T

−In−1 C

]
,

where C is the circulant matrix circ(1, 0, ..., 0,−1) of order n−1. The Moore-Penrose inverse
of N is given by

N+ =
1

n

[
1 X
0 Y

]
,

where X = (CCT + In−1)
−1(Jn−1 − nIn−1) and Y = −CTX.

Proof. First note that
CCT + In−1 = circ(3,−1, 0, . . . , 0,−1)

is strictly diagonally dominant and consequently invertible. Let

H =
1

n

[
1 X
0 Y

]
,

where X = (CCT + In−1)
−1(Jn−1 − nIn−1) and Y = −CTX. We show that H = N+.

NH =
1

n

[
1T 0T

−In−1 C

] [
1 X
0 Y

]
=

1

n

[
1T1 1TX
−1 −X + CY

]
=

1

n

[
n− 1 1TX
−1 −X + CY

]
(3)

10
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Since the row sum of CCT + In−1 = circ(3,−1, 0, . . . , 0,−1) is 1, 1T (CCT + In−1)
−1 =

1
1
1T = 1T by Proposition 1.1. Then

1TX = 1T (CCT + In−1)
−1(Jn−1 − nIn−1)

= 1T (Jn−1 − nIn−1)

= (n− 1)1T − n1T

= −1T .

Now we simplify CY −X as follows:

CY −X = C(−CTX)−X

= −CCTX −X

= −(CCT + In−1)X

= −(CCT + In−1)(CCT + In−1)
−1(Jn−1 − nIn−1)

= −(Jn−1 − nIn−1)

= nIn−1 − Jn−1.

Putting 1TX = −1T and CY −X = nIn−1 − Jn−1 in (3), we get

NH =
1

n

[
n− 1 −1T

−1 nIn−1 − Jn−1

]
=

[
1− 1

n
− 1

n
1T

− 1
n
1 In−1 − 1

n
Jn−1

]
= In −

1

n
Jn.

Now we show NHN=N.

NHN =

(
In −

1

n
Jn

)
N

= N − 1

n
JnN

= N (since the column sum of N is 0)

We also show HNH=H.

HNH = H

(
In −

1

n
Jn

)
= H − 1

n
HJn

To show H − 1
n
HJn = H, we show that HJn = O. Note that

HJn =

[
1 X
0 Y

] [
1T 1T

Jn−1 Jn−1

]
=

[
Jn−1 + XJn−1 Jn−1 + XJn−1

Y Jn−1 Y Jn−1

]
.

11
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To show H − 1
n
HJn = H, it suffices to show Jn−1 + XJn−1 = O and Y Jn−1 = O.

Jn−1 + XJn−1 = Jn−1 + (CCT + In−1)
−1(Jn−1 − nIn−1)Jn−1

= Jn−1 + (CCT + In−1)
−1((n− 1)Jn−1 − nJn−1)

= Jn−1 + (CCT + In−1)
−1(−Jn−1)

= Jn−1 − Jn−1 (since the row sum of (CCT + In−1)
−1 is 1)

= O

Y Jn−1 = −CTXJn−1

= −CT (CCT + In−1)
−1(Jn−1 − nIn−1)Jn−1

= −CT (CCT + In−1)
−1(−Jn−1)

= CTJn−1

= O (since the row sum of CT is 0)

Note that NH = In − 1
n
Jn is symmetric. It remains to show that HN is symmetric.

HN =
1

n

[
1 X
0 Y

] [
1T 0T

−In−1 C

]
=

1

n

[
11T −X XC
−Y Y C

]
=

1

n

[
Jn−1 −X XC
−Y Y C

]
=

1

n

[
Jn−1 −X XC
CTX −CTXC

]
To show HN is symmetric, it suffices to show that X is symmetric . Note that CCT +In−1

is a symmetric circulant matrix and so is (CCT+In−1)
−1 by Proposition 1.1. Also Jn−1−nIn−1

is a symmetric circulant matrix. Then so is

X = (CCT + In−1)
−1 [Jn−1 − nIn−1]

as a product of two symmetric circulant matrices.

Thus H = N+.

Example 3.2. Consider W6 with vertex and edge labeling and edge orientation given in
Figure 2 and its oriented incidence matrix N . The Moore-Penrose inverse N+ of N is as
follows:

12
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1

2

3

45

6

e1

e2

e3e4

e5

e6

e7

e8

e9

e10

Figure 2: An oriented wheel graph on 6 vertices

N =


1 1 1 1 1 0 0 0 0 0
−1 0 0 0 0 1 0 0 0 −1

0 −1 0 0 0 −1 1 0 0 0
0 0 −1 0 0 0 −1 1 0 0
0 0 0 −1 0 0 0 −1 1 0
0 0 0 0 −1 0 0 0 −1 1

 ,

N+ =
1

66



11 −19 −1 5 5 −1
11 −1 −19 −1 5 5
11 5 −1 −19 −1 5
11 5 5 −1 −19 −1
11 −1 5 5 −1 −19
0 18 −18 −6 0 6
0 6 18 −18 −6 0
0 0 6 18 −18 −6
0 −6 0 6 18 −18
0 −18 −6 0 6 18


.

Theorem 3.1 does not provide an explicit formula for each entry of N+. To do that, we
use the following result.

Corollary 3.3. The inverse of the circulant matrix circ(3,−1, 0, ..., 0,−1) of order n > 3 is
given by

[circ(3,−1, 0, ..., 0,−1)]−1 = circ(a0, a1, . . . , an−1),

where

aj =
2n−j
√

5

[
(3−

√
5)j

2n − (3−
√

5)n
− (3 +

√
5)j

2n − (3 +
√

5)n

]
, j = 0, 1, . . . , n− 1.

13
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Proof. Here a = 3 and b = c = −1. By Theorem 2.4,

aj =
z1z2

b(z1 − z2)

(
zj1

1− zn1
− zj2

1− zn2

)
where z1, z2 = (−3±

√
32 − 4(−1)(−1))/(2(−1)) = (3∓

√
5)/2. Then

aj =

(
3−
√
5

2

)(
3+
√
5

2

)
−1
(

3−
√
5

2
− 3+

√
5

2

) [ (3−
√
5)j

2j

1− (3−
√
5)n

2n

−
(3+
√
5)j

2j

1− (3+
√
5)n

2n

]

=
9−5
4√
5

 (3−
√

5)j

2j
(

2n−(3−
√
5)n

2n

) − (3 +
√

5)j

2j
(

2n−(3+
√
5)n

2n

)


=
1√
5

[
2n−j(3−

√
5)j

2n − (3−
√

5)n
− 2n−j(3 +

√
5)j

2n − (3 +
√

5)n

]

=
2n−j
√

5

[
(3−

√
5)j

2n − (3−
√

5)n
− (3 +

√
5)j

2n − (3 +
√

5)n

]
.

Corollary 3.4. Matrix X in Theorem 3.1 is given by X = circ(b0, b1, . . . , bn−2) where

bj = 1 +
n2n−1−j
√

5

[
(3 +

√
5)j

2n−1 − (3 +
√

5)n−1
− (3−

√
5)j

2n−1 − (3−
√

5)n−1

]
,

for j = 0, 1, . . . , n− 2.

Proof. Recall CCT + In−1 = circ(3,−1, 0, . . . , 0,−1). Since the row sum of CCT + In−1 is 1,
(CCT + In−1)

−1Jn−1 = Jn−1 by Proposition 1.1. Then

X = (CCT + In−1)
−1(Jn−1 − nIn−1)

= [circ(3,−1, 0, . . . , 0,−1)]−1(Jn−1 − nIn−1)

= [circ(3,−1, 0, . . . , 0,−1)]−1Jn−1 − n[circ(3,−1, 0, . . . , 0,−1)]−1

= Jn−1 − n circ(3,−1, 0, . . . , 0,−1)]−1.

By the preceding corollary, X = circ(b0, b1, ..., bn−2) where

bj = 1− n2n−1−j
√

5

[
(3−

√
5)j

2n−1 − (3−
√

5)n−1
− (3 +

√
5)j

2n−1 − (3 +
√

5)n−1

]

= 1 +
n2n−1−j
√

5

[
(3 +

√
5)j

2n−1 − (3 +
√

5)n−1
− (3−

√
5)j

2n−1 − (3−
√

5)n−1

]
.

14
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Corollary 3.5. Matrix Y in Theorem 3.1 is given by Y = circ(d0, d1, . . . , dn−2) where

d0 =
2n√

5

[
(3 +

√
5)n−2 − 2n−2

2n−1 − (3 +
√

5)n−1
− (3−

√
5)n−2 − 2n−2

2n−1 − (3−
√

5)n−1

]
.

and for j = 1, 2, . . . , n− 2,

dj = − n2n−j

5 +
√

5

[
(3 +

√
5)j

2n−1 − (3 +
√

5)n−1
+

2(3−
√

5)j−1

2n−1 − (3−
√

5)n−1

]
.

Proof. Consider X = circ(b0, b1, . . . , bn−2) in Corollary 3.4. Then

Y = −CTX

= − circ(b0 − bn−2, b1 − b0, ..., bn−2 − bn−3)

= circ(bn−2 − b0, b0 − b1, ..., bn−3 − bn−2).

Then Y = circ(d0, d1, . . . , dn−2) where

dj = bj−1 − bj, j = 0, 1, . . . , n− 2 (where b−1 = bn−2).

d0 = bn−2 − b0

= 1 +
n2n−1−(n−2)
√

5

[
(3 +

√
5)n−2

2n−1 − (3 +
√

5)n−1
− (3−

√
5)n−2

2n−1 − (3−
√

5)n−1

]

−1− n2n−1
√

5

[
1

2n−1 − (3 +
√

5)n−1
− 1

2n−1 − (3−
√

5)n−1

]
=

2n√
5

[
(3 +

√
5)n−2 − 2n−2

2n−1 − (3 +
√

5)n−1
− (3−

√
5)n−2 − 2n−2

2n−1 − (3−
√

5)n−1

]

15
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For j = 1, 2, . . . , n− 2,

dj = bj−1 − bj

= 1 +
n2n−1−(j−1)
√

5

[
(3 +

√
5)j−1

2n−1 − (3 +
√

5)n−1
− (3−

√
5)j−1

2n−1 − (3−
√

5)n−1

]

−1− n2n−1−j
√

5

[
(3 +

√
5)j

2n−1 − (3 +
√

5)n−1
− (3−

√
5)j

2n−1 − (3−
√

5)n−1

]

=
n2n−1−j
√

5

[
2(3 +

√
5)j−1

2n−1 − (3 +
√

5)n−1
− 2(3−

√
5)j−1

2n−1 − (3−
√

5)n−1

]

−n2n−1−j
√

5

[
(3 +

√
5)j

2n−1 − (3 +
√

5)n−1
− (3−

√
5)j

2n−1 − (3−
√

5)n−1

]

=
n2n−1−j
√

5

[
(2− (3 +

√
5))(3 +

√
5)j−1

2n−1 − (3 +
√

5)n−1
− (2− (3−

√
5))(3−

√
5)j−1

2n−1 − (3−
√

5)n−1

]

=
n2n−1−j
√

5

[
−(1 +

√
5)(3 +

√
5)j−1

2n−1 − (3 +
√

5)n−1
− (−1 +

√
5)(3−

√
5)j−1

2n−1 − (3−
√

5)n−1

]

=
n2n−1−j
√

5(1 +
√

5)

[
−(1 +

√
5)2(3 +

√
5)j−1

2n−1 − (3 +
√

5)n−1
+

(1 +
√

5)(1−
√

5)(3−
√

5)j−1

2n−1 − (3−
√

5)n−1

]

=
n2n−1−j

5 +
√

5

[
−(6 + 2

√
5)(3 +

√
5)j−1

2n−1 − (3 +
√

5)n−1
− 4(3−

√
5)j−1

2n−1 − (3−
√

5)n−1

]

= −n2n−1−j

5 +
√

5

[
2(3 +

√
5)j

2n−1 − (3 +
√

5)n−1
+

4(3−
√

5)j−1

2n−1 − (3−
√

5)n−1

]

= − n2n−j

5 +
√

5

[
(3 +

√
5)j

2n−1 − (3 +
√

5)n−1
+

2(3−
√

5)j−1

2n−1 − (3−
√

5)n−1

]
.

Now we study the Moore-Penrose inverse of the Laplacian matrix of Wn.

Theorem 3.6. Let Wn be the wheel graph on n vertices with the Laplacian matrix L given
by

L =

[
n− 1 −1T

−1 B

]
,

where B is the circulant matrix circ(3,−1, 0, ..., 0,−1) of order n − 1. The Moore-Penrose
inverse of L is given by

L+ =
1

n2

[
n− 1 −1T

−1 −Jn−1 − nX

]
,

where X = (CCT + In−1)
−1 [Jn−1 − nIn−1] = circ(b0, b1, . . . , bn−1) with
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bj = 1 +
n2n−1−j
√

5

[
(3 +

√
5)j

2n−1 − (3 +
√

5)n−1
− (3−

√
5)j

2n−1 − (3−
√

5)n−1

]
, j = 0, 1, . . . , n− 1.

Proof. First note that L = NNT for the incidence matrix N of the form

N =

[
1T 0T

−In−1 C

]
,

where C is the circulant matrix circ(1, 0, ..., 0,−1) of order n− 1. By Theorem 3.1,

N+ =
1

n

[
1 X
0 Y

]
,

where X = 2(CCT + In−1)
−1 [Jn−1 − nIn−1] and Y = −CTX.

L+ = (N+)TN+

=
1

n2

[
1T 0T

XT Y T

] [
1 X
0 Y

]
=

1

n2

[
1T 0T

X Y T

] [
1 X
0 Y

]
(since X is symmetric)

=
1

n2

[
1T1 1TX
X1 XX + Y TY

]
=

1

n2

[
n− 1 −1T

−1 XX + Y TY

]
(since 1TX = −1T and X1 = −1) (4)

Now we simplify XX + Y TY as follows:

XX + Y TY = XX −XC(−CTX)

= XIn−1X + XCCTX

= X(CCT + In−1)X

= X(CCT + In−1)(CCT + In−1)
−1(Jn−1 − nIn−1)

= X(Jn−1 − nIn−1)

= −Jn−1 − nX

Plugging XX + Y TY = −Jn−1 − nX in (4), we get

L+ =
1

n2

[
n− 1 −1T

−1 −Jn−1 − nX

]
,

where X is given by Corollary 3.4.
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Example 3.7. Consider W6 with vertex and edge labeling given in Figure 2 and its Laplacian
matrix L. The Moore-Penrose inverse L+ of L is as follows:

L =


5 −1 −1 −1 −1 −1
−1 3 −1 0 0 −1
−1 −1 3 −1 0 0
−1 0 −1 3 −1 0
−1 0 0 −1 3 −1
−1 −1 0 0 −1 3

 , L+ =
1

396


55 −11 −11 −11 −11 −11
−11 103 −5 −41 −41 −5
−11 −5 103 −5 −41 −41
−11 −41 −5 103 −5 −41
−11 −41 −41 −5 103 −5
−11 −5 −41 −41 −5 103

 .
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