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Abstract

A simple connected graph is strongly connected if there exists a directed path
between every pair of vertices in both directions. Robbins showed that every 2-edge-
connected graph can be given edge orientations that result in the graph being strongly
connected. But a random assignment of edge directions may or may not result in a
graph being strongly connected. We say that a 2-edge-connected graph is very strongly
connected if any choice of edge orientations that does not feature a vertex having
maximal or minimal indegree yields a strongly connected graph. We classify all graphs
as either very strongly connected or not very strongly connected.

1 Introduction

A graph G = G(V,E) consists of a set V of vertices (singular is vertex ) and a set E of edges
that connect some pairs of vertices. An edge is said to be incident to its endpoint vertices,
and two vertices joined by an edge are said to be adjacent. A path in a graph is a sequence
of edges that joins a sequence of distinct vertices. A graph is connected if there exists a
path between every pair of vertices. A graph is simple if there are no “loop” edges from a
vertex to itself and there are not multiple edges between pairs of vertices. A directed graph
(or digraph) assigns a direction (or orientation) to each edge in the graph. In the rest of this
paper, all graphs are assumed to be simple and connected.

The degree of a vertex is the number of edges that are incident to the vertex. The
indegree of a vertex is the number of edges directed toward a vertex minus the number of
edges directed away from the vertex. Note that a vertex has maximal indegree if every edge
incident to the vertex is oriented toward the vertex (i.e., a sink vertex), and a vertex has
minimal indegree if every edge is oriented away from the vertex (i.e., a source vertex).
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A graph is strongly connected if there exists a directed path between every pair of vertices
in both directions [2]. It is easy to see that a graph with a source, sink, or bridge, or a
graph that is not connected, cannot be strongly connected. It therefore seems natural to
ask the following question: if a connected graph has no bridges, are there necessary and
sufficient conditions that allow one to conclude that every choice of edge orientations that
does not create sources or sinks (i.e., any valid orientation) result in the graph being strongly
connected? This leads to the following characterization.

Definition 1.1. A graph G is very strongly connected, or VSC, when every valid orientation
of G yields a strongly connected graph. A graph that is not VSC is said to be anti-VSC.

It is clear that every VSC graph is also strongly connected, but the converse is false. For
example, consider the cube graph Q3. There are edge orientations that result in a strongly
connected graph, but Q3 is anti-VSC because one can find a choice of edge orientations that
results in a graph that is not strongly connected, as seen in Figure 1.

Figure 1: Strongly connected and anti-VSC cube graph edge orientations, respectively.

Since graphs with sources or sinks cannot be strongly connected, we will only consider
graphs whose vertices do not have minimal or maximal indegree. We will also impose two
other conditions on all graphs we analyze. First, since any graph vertex of degree 2 is an
internal vertex of a directed path, without loss of generality all such directed paths can be
thought of single directed edges. Second, we will only consider graphs that are two-edge
connected, that is, graphs that remain connected if any edge is removed.

We note that a graph being VSC is related to how one analyzes certain positions in the
combinatorial game Sylver Coinage. Finite game boards in Sylver Coinage can be represented
by digraphs, and there is a connection between the digraph being VSC and the corresponding
game position being a losing position for the next player. This realization was the catalyst
for the authors to begin investigating variations of strongly connected graphs.

The remainder of this paper is structured as follows. In Section 2, motivated by a result of
Lovász [1], we will characterize all finite simple connected bridgeless graphs that are VSC. In
Section 3, we will prove that all other finite simple connected bridgeless graphs are anti-VSC.

2 Families of VSC graphs

There are many families of graphs one could consider when trying to determine if the given
graphs are VSC or anti-VSC. In this section, motivated by the following result of Lovász
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(1965), we will investigate four specific graph families [1].

Theorem 2.1 (Lovász). Let G be any finite graph whose vertices all have at least degree 3.
Then G does not contain two vertex-disjoint cycles if and only if

1. For some vertex v of G, G \ {v} is a forest, or

2. G is a wheel graph, or

3. G is a complete graph on 4 or 5 vertices, or

4. G \ {u, v, w} is edgeless for some vertex triple u, v, w of G.

We will now show that each of the four types of graphs identified in Theorem 2.1 is VSC.
Moreover, in our context of simple connected bridgeless graphs whose vertices all have at
least degree 3, we will soon conclude that these four types of graphs completely characterize
all VSC graphs.

Theorem 2.2. If G is a finite simple connected bridgeless graph whose vertices all have at
least degree 3, and if for some vertex v of G, G \ {v} is a forest, then G is VSC.

Proof. Suppose G is a graph containing some vertex v for which G\{v} is a forest. To show
that G is VSC, we must show that in any orientation of G which is source-free and sink-free,
for any u ̸= v, there exists a directed path from u to v and a directed path from v to u. We
fix u ̸= v and construct such paths. First, for a path from u to v, consider a longest directed
path in G which begins at u. Call this uu1u2...ui. We claim that v ∈ {u, u1, u2, ..., ui}.
Indeed, suppose not. Since ui is not a sink, there exists an edge uiui+1 directed away from
ui; since v /∈ {u, u1, u2, ..., ui}, the graph induced on {u, u1, u2, ..., ui} must be acyclic, and
so ui+1 /∈ {u, u1, u2, ..., ui}. Thus, uu1u2...uiui+1 is a strictly longer directed path starting at
u, a contradiction. We conclude that v ∈ {u, u1, u2, ..., ui}, so there exists a directed path
from u to v.

A similar argument shows that there exists a directed path from v to u. It now follows
that there exist paths between every pair of vertices of G in both directions, and hence G is
VSC.

Definition 2.3. Given any n ∈ N, n ≥ 3, the wheel graph, denoted Wn, is formed by a single
hub vertex connected by radial edges, or spokes, to each of the n vertices of a cycle.

In order to prove that wheel graphs are VSC, we will need to define and analyze a new
type of graph.

Definition 2.4. Given any n ≥ 3, the n-chord graph, denoted chn, is a cycle formed from
n + 1 vertices and having n chords that all share a common vertex - that is, chn has one
vertex of degree n, denoted vn, n− 2 vertices of degree 3, and 2 vertices of degree 2 that are
adjacent to vn.

See Figure 2 for an image of ch6. We note that n-chord graphs feature two vertices of
degree 2. This violates a restriction imposed in the last section on the types of graphs we
will investigate, but it is a necessary (and temporary) means to an end.
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Figure 2: An oriented ch6 whose outer cycle is a directed cycle.

Theorem 2.5. For all n ≥ 3, chn is VSC.

Proof. It is easy to verify that ch3, ch4 and ch5 are VSC for any valid orientations. Moreover,
given any valid orientation of chn, if the outer cycle is a directed cycle, then clearly chn is
strongly connected.

Now assume that the outer cycle of chn is not a directed cycle. Using induction, given
k ≥ 5, assume that each of ch3, ch4, ..., chk are VSC, and consider chk+1. There must be at
least one cycle vertex, say v′, which is distinct from vn, has degree 3, and is an endpoint to
cycle edges with opposite orientations (i.e., both cycle edges are directed toward v′ or both
are directed away from v′). See Figure 3 for an example of one of these scenarios.

We will now partition chk+1 into two subgraphs that share the chord v′vn as a common
edge. There are now two cases to consider.

1. If v′ is adjacent to a degree 2 vertex, one subgraph is a directed 3-cycle and the other
is chk. Both subgraphs are source-free, sink-free, and strongly connected (the k-chord
graph via the inductive hypothesis). This case is depicted in Figure 3.

2. If v′ is not adjacent to a degree 2 vertex, by construction both subgraphs are in fact
“smaller” n-chord graphs, say chs and cht, that are also source-free and sink-free. Since
both subgraphs have valid orientations, by the inductive hypothesis they are VSC.

Thus, given any orientation of chk+1, the two corresponding subgraphs also have valid
orientations, are strongly connected and share at least one vertex, and so chk+1 is strongly
connected. Consequently, chk+1 is VSC, and via induction the result follows.

Theorem 2.6. For all n ≥ 3, Wn is VSC.

Proof. It is easy to see that W3 is VSC. Given any Wn with n ≥ 4 and any valid edge
orientation, if the outer cycle is directed, it follows that Wn must be strongly connected.

If the outer cycle is not a directed cycle, the cycle must consist of at least two directed
paths. This implies that there are at least two cycle vertices, say vi and vo, whose incident
edges have opposite orientations: the corresponding spoke edges must be directed away from
vi and towards vo. Hence, Wn can then be partitioned into 2 subgraphs that share these
directed spokes. There are two cases to consider:
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Figure 3: An oriented and subdivided ch6 whose outer cycle is not a directed cycle.

1. If vi and vo are adjacent, one subgraph is a directed 3-cycle and the other is chn. Both
subgraphs have valid orientations and are clearly strongly connected, and hence the
wheel itself is strongly connected.

2. If vi and vo are not adjacent, by construction both subgraphs are “smaller” n-chord
graphs, say chs and cht, that have valid orientations and are therefore strongly con-
nected. Thus, the original wheel is also strongly connected. This case is depicted in
Figure 4.

In both cases, the corresponding wheel graph is strongly connected. Thus, Wn is VSC.
See Figure 4 for this argument applied to W12.

vi

v0

Figure 4: Subdividing W12 into overlapping 8-chord and 6-chord graphs.

For n ≥ 3, we let Kn denote the family of complete graphs on n vertices. With our
restriction to not allow graphs to have vertices with minimal or maximal indegree, it is easy
to see that each of K3, K4, and K5 are VSC (verification of this is left to the reader). But
if n ≥ 6, Kn is anti-VSC, which will be verified in the next section.

The final result of this section requires the following definitions.

Definition 2.7. The join of two disjoint graphs G and H, denoted G + H, is formed by
connecting every vertex of G with every vertex of H.
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Definition 2.8. Given any n ∈ N, we let Jn = C3 + Vn denote the join of a 3-cycle C3 with
Vn, a set of n isolated vertices.

Given that G is a finite simple connected graph whose vertices all have at least degree 3,
suppose that G \ {v, u, w} is edgeless for some vertex triple v, u, w of G. Let X = {u, v, w}
and let Y denote the vertices in G \X with |Y | = n. Note that each vertex in Y has degree
3. The structure of G is completely determined by the subgraph H of G with V (H) = X
together with any edges connecting the vertices of H. There are 4 possibilities:

1. If H is edgeless, G is isomorphic to the complete bipartite graph K3,n.

2. If H contains 1 edge, G contains K3,n as a subgraph, but the two vertices of X sharing
an edge have degree 4.

3. If H contains 2 edges, H is a path of length 2, so G is isomorphic to the fan graph
F3,n.

4. If H contains 3 edges, G is isomorphic to Jn.

The fourth scenario above, in which H is a cycle and G is isomorphic to a join, will now
be verified.

Theorem 2.9. For all n ∈ N, Jn is VSC.

Proof. Let Jn have any valid orientation and let C = C3 denote the cycle of Jn. If C is a
directed cycle, it is easy to see that Jn is strongly connected. Now assume that C is not a
directed cycle and let V (C) = {x, y, z}. Since C is not directed, the subgraph of Jn induced
by V (C) contains both a source and a sink. Without loss of generality, x is a source and z is
a sink. Since Jn is source-free and sink-free, there must be some vertex a ∈ V (Jn) such that
the edge ax is directed toward x, and a vertex b ∈ V (Jn) such that the edge bz is directed
towards b.

If a = b, then {x, y, z, a} induce an isomorphic copy of J1, say J , which contains no
source or sink, and hence is strongly connected. Since every vertex of Jn \ J must send one
edge to J and receive one edge from J , it follows that Jn is strongly connected.

Now assume a ̸= b. Note that there is a directed path from a to every vertex of C,
and from each vertex of C to b, as indicated in Figure 5 applied to J4. Similarly, for any
c ∈ Jn \ {a, b}, there is a directed path from a to c (concatenating an edge directed from
C to c with a path from a to the appropriate vertex on C) and a directed path from c to
b (concatenating an appropriate directed path from C to b with an edge directed from c to
C).

Next, we show that there exists a directed path from b to a. Note that one of ya and za
must be directed toward a; it follows that if xb is directed toward x, then there is a directed
path from b to a. So, we may assume xb is directed toward b. Since b is not a sink, the edge
yb must be directed from b to y. Now, either ya is directed from y to a (in which case bya is
a directed path from b to a) or za is directed from z to a (in which case byza is a directed
path from b to a).
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Now, given any vertices c, d of Jn, concatenate a directed path from c to b with a directed
path from b to a and a directed path from a to d. This produces a directed walk from c to d
(which is either equal to or contains a directed path from c to d.) The same argument with
the roles of c, d reversed establishes strong connectivity.

Thus, Jn is strongly connected for every valid orientation, and hence is VSC.

C

a b

x

y

z

Figure 5: J4 with a ̸= b and C not a directed cycle.

The graphs in the remaining three cases from Theorem 2.1 can be shown to be VSC using
similar and less involved arguments and are left to the reader.

3 Classifying all anti-VSC graphs

The four examples of VSC families from Section 2 completely characterize all finite simple
bridgeless connected graphs whose vertices have at least degree 3 and do not contain two
disjoint cycles, as shown in [1].

Using this result, we will now show that all other bridgeless connected graphs whose
vertices have at least degree 3 are anti-VSC. The proof will involve the use of ear decom-
positions, which are guaranteed to exist in all bridgeless connected graphs. See [3] for more
information. The proof will also involve a process for isolating a subgraph in a manner that
prevents the graph from being VSC.

Definition 3.1. Let H be a subgraph of a digraph G. If every edge of G\H that is incident
to a vertex of H is oriented toward H - in effect, isolating H from the rest of G - we say
that H is quarantined, and we say the edges of G that are directed toward the vertices of H
are quarantining edges.

See Figure 6 for this argument applied to K7. The quarantined subgraph is colored green;
the quarantining edges are red; and all remaining edges are blue.

Theorem 3.2. Let G be a finite bridgeless simple connected graph whose vertices have at
least degree 3. Then G is anti-VSC if and only if G has two vertex-disjoint cycles.

Proof. Suppose G is a finite bridgeless simple connected graph that does not have two vertex-
disjoint cycles. Then by Theorem 2.1 and previous results, G is VSC. The forward direction
follows via the contrapositive.
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Figure 6: Quarantining a cycle in K7.

Now assume that G has two vertex-disjoint cycles, Cα and Cω. Direct the edges on both
cycles. Now begin to create an ear decomposition of G from Cα. At each ear decomposition
step, add a face of G to the component of G containing Cα that is both adjacent to this
Cα component and disjoint from Cω, and whose boundary is a directed path. Continue this
process until this ear decomposition-generated subgraph of G containing Cα is maximal. Call
this subgraph Eα. There are now two cases to consider:

1. All faces of G \ {Eα ∪ Cω} are adjacent to both Eα and Cω. In this case, all edges of
G \ {Eα ∪Cω} have endpoints on both graph components; these undirected edges can
be directed towards Cω, and so Cω is quarantined.

2. At least one of the faces of G\{Eα∪Cω} is adjacent to Cω and not adjacent to Eα. In
this case, begin to create an ear decomposition of G from Cω that is disjoint from Eα.
Continue until this subgraph of G, Eω, is maximal. Then all edges of G \ {Eα ∪ Eω}
have endpoints on both graph components, and these undirected edges can again be
directed towards Cω, quarantining Cω.

Note that in both cases, the specified edge orientations prevent the creation of sources
or sinks. This verifies the reverse direction and the result then follows.

See Figures 7 and 8 for examples of the arguments described in the proof of Theorem 3.2
applied to the Frucht graph.

We encourage interested readers to explicitly verify that any of the many named graph
families not discussed here having two vertex disjoint cycles are in fact anti-VSC. Similarly,
curious readers can explicitly show that named families of graphs not having disjoint vertex
cycles are VSC.
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Cα

Cω

Cα

Cω

Figure 7: Disjoint cycles Cα, Cω in the Frucht graph and the maximal subgraph Eα.

Cα Cω
Cα

Cω

Figure 8: Disjoint cycles Cα, Cω in the Frucht graph and the maximal subgraphs Eα and
Eω.
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