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Abstract

We show that all stack-sorting polytopes are simplices. Furthermore, we show that
the stack-sorting polytopes generated from permutations of the form Ln1 have relative
volume 1. We establish an upper bound for the number of lattice points in a stack-
sorting polytope. In particular, stack-sorting polytopes generated from permutations of
the form 2Ln1 have no interior points.

1 Introduction

A stack is a data structure that only allows the most recently input element to be output.
Donald Knuth first popularized the idea of sorting a permutation by storing its values on a
stack [10]. Twenty-two years later, Julian West introduced a deterministic approach: the
stack-sorting algorithm [14]. One pass of the stack-sorting algorithm has time complexity
O(n), but the algorithm is not guaranteed to fully sort a permutation in ascending order. So,
after we pass a permutation through the algorithm, we pass the sorted result through the
algorithm again. If we repeat this, the permutation will be sorted in ascending order after at
most n − 1 iterations of the algorithm. We will discuss the stack-sorting algorithm in depth
in Section 2.

In [11], Lee, Mitchell, and Vindas-Meléndez analyzed the geometry of stack-sorting
polytopes. To generate a stack-sorting polytope from a permutation of numbers 1 through n,
we repeatedly pass the permutation through the stack-sorting algorithm. Then, we consider
these input and output permutations as a set of points. The convex hull of these points will
be a stack-sorting polytope, a subset of the permutahedron in Rn.

In this paper, we continue the study of stack-sorting polytopes. We provide some
computational results on the stack-sorting algorithm. Then, we focus on the geometry and

* Corresponding author
MSC2020: 52B05, 05A15, 52B20; Keywords: Stack-sorting algorithm, Simplices polytope, Permutation,
Relative volume
Received Aug 4, 2025; Revised Aug 19, 2025; Accepted Aug 20, 2025; Published Aug 21, 2025
© The author(s). Released under the CC BY 4.0 International License

52



Ake et al./ American Journal of Combinatorics 4 (2025) 52–68

volumes of stack-sorting polytopes. We also discuss the interior lattice points of stack-sorting
polytopes. We conclude by utilizing triangulations to study the lattice points of these
polytopes.

In Section 2, we give an overview of the stack-sorting algorithm, convex lattice polytopes,
and stack-sorting polytopes. In Section 3, we prove that all stack-sorting polytopes are
simplices, which we state in Theorem 3.3.

Theorem 3.3. Let π ∈ Sn be exactly k-stack-sortable. Then, △ := conv(Sπ) is a k-simplex.

In Section 4, we give the volume of all Ln1 simplices.

Theorem 4.6. Let π be an Ln1 permutation. The relative volume of △ = conv(Sπ) is 1.

In Section 5, we study the lattice points of stack-sorting polytopes. We give an upper
bound for the number of lattice points in a stack-sorting polytope generated by an Ln1
permutation. We briefly discuss triangulations of stack-sorting polytopes. We also show that
stack-sorting polytopes generated by 2Ln1 permutations are hollow in Proposition 5.2.

Proposition 5.2. Let π ∈ Sn be of the form 2Ln1, where L is any permutation of {3, 4, ... , (n−
1)}. The simplex △ := conv(Sπ) is hollow. In particular, any non-vertex lattice point of △
lies on the facet formed by the convex hull of Sπ \ {e}.

In Section 6, we conclude by giving questions, conjectures, and areas of future research.

2 Background and preliminaries

In this section, we provide some necessary background for studying stack-sorting polytopes.
We begin with the stack-sorting algorithm. This algorithm has been widely studied in
combinatorics, computer science, probability, and polyhedral geometry; for example, see
[3–9,11,12].

2.1 Stack-sorting algorithm

The stack-sorting algorithm takes a permutation π ∈ Sn of the numbers 1 through n as
input. The purpose of the algorithm is to sort these numbers in increasing order. We denote
the identity permutation by e = 123 · · · n.

Before we discuss the stack-sorting algorithm, we must define a stack. A stack is commonly
referred to as a “last in, first out” data structure. A stack outputs its values in the opposite
order to which they are input.

We refer to inputting a value into a stack as a push, and we refer to outputting a value
from the stack as a pop. We call the most-recently-input element of the stack the top element,
t.

Now, we define the stack-sorting algorithm.

Definition 2.1. The stack-sorting algorithm on a permutation π is defined in West’s
thesis [14]. We start with an empty stack and a permutation π = π1π2 · · · πn, and we iterate
through the elements of π, from left to right. For each element πk :
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� We compare πk to the value at the top of the stack, t.

� While πk is greater than t, we pop t from the stack into our output. We repeat this
step until πk is less than t, or until the stack is empty.

� Once πk is less than t, or once the stack is empty, we push πk onto the stack and repeat
the process with πk+1.

Finally, once we have iterated through all elements of π, we pop the remaining values on the
stack. We call the resulting permutation s(π).

It is important to note that all elements of π will be pushed onto the stack and popped
into the output. Also note that the stack is always strictly decreasing.

We illustrate this process with an example.

Example 2.2. We pass π = 231 through the stack-sorting algorithm. We begin by pushing
the first element of π, 2, onto the stack.

(i) 2 3 1

2

3 1

Now, we consider the next element of π, 3. We see 3 is greater than the top element of
the stack, 2. So, we pop 2.

(ii)

2

3 1 2 3 1

The stack is empty, so we push 3.

(iii) 2 3 1 2

3

1

Now, we consider the next (and final) element of π, 1. We see 1 is less than the top
element of the stack, 3. So, we push 1.

(iv) 2

3

1 2

3
1

Now that we have iterated through the permutation, we pop the values that are in the
stack.
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(v) 2

3
1

2

3

1

(vi) 2 1

3

2 1 3

This gives us s(π) = 213.

As we see in Example 2.2, the stack-sorting algorithm does not always fully sort a
permutation in ascending order. We can pass s(π) through the algorithm again, yielding
s(s(π)), or s2(π). We continue applying the algorithm until our permutation is fully sorted.
A permutation of length n will be sorted in ascending order after at most n − 1 iterations of
the stack-sorting algorithm.

Definition 2.3. Given a permutation π ∈ Sn, if s
k(π) = e = 123 · · · n, then π is k-stack-

sortable. If this is the smallest value k for which π is k-stack-sortable, then π is exactly
k-stack-sortable.

Let Sπ be the set, including π, of permutations resulting from subsequent passes of π
through the stack-sorting algorithm. That is, Sπ = {π, s(π), s2(π), ... , e}. We illustrate Sπ

with an example.

Example 2.4. Let π = 3241. Then, s(π) = 2314, s2(π) = 2134, and s3(π) = 1234. So,
Sπ = {3241, 2314, 2134, 1234}.

We study Sπ further when we discuss stack-sorting polytopes.

2.2 Permutations ending in ascending or descending subsequences

We now present results on the stack-sorting algorithm. We start by exploring permutations
ending in an ascending sequence. We denote these permutations as π = AB , where A and B
are subsequences of π and B is in ascending order.

Proposition 2.5. Let π = AB ∈ Sn, where B is some ascending sequence. Then, π is
|A|-stack-sortable.

Proof. We proceed by strong induction on |A|.
For the |A| = 0 case, π = e, so s0(π) = π = e.
Now, assume that s |A|(π) = e for |A| < k . We show that s |A|(π) = e for |A| = k .
Consider the stack-sorting algorithm on π. First, the algorithm iterates through the

values in A. When the algorithm considers the first element of B , there will be at least one
value of A on the stack.

The stack is strictly decreasing, so the smallest value on the stack is its top value, t. Also,
B = b1b2 · · · br is strictly increasing, so the smallest value of B is its first value, b1.
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Now, consider two cases. If b1 > t, then t will be the next value popped. Otherwise,
b1 < t, and b1 will be pushed. Then, the algorithm will consider b2, which is greater than b1.
So, b1 will be the next value popped. Either way, the next value popped is smallest of the
remaining elements.

Now, we again have a strictly decreasing stack and a strictly increasing sequence. So,
the next value popped will be the next smallest, and so forth. In this manner, all of the
remaining elements will be popped in ascending order, and s(π) ends in a strictly longer
increasing sequence than π. That is, s(π) can be written as AB , where B is increasing and
|A| < k .

By the inductive hypothesis, s(π) is (k − 1)-stack-sortable. So, π is k-stack-sortable.

We illustrate Proposition 2.5 with an example.

Example 2.6. The permutation π = 2451367 can be broken into A = 245 and B = 1367,
where |A| = 3. We have s(π) = 2413567. Note how the value 5 is inserted into the sequence
B = 1367. Next, we have s2(π) = 2134567. Here, 4 is inserted into the sequence 13567.
Finally, we have s3(π) = 1234567. So, π = 2451367 is 3-stack-sortable.

Remark 2.7. Note that by a similar proof to Proposition 2.5, we have that π is exactly
|A|-stack-sortable if and only if A ends with its largest value, and B begins with 1.

Next, we explore permutations ending in a descending sequence. Again, we denote these
permutations as π = AB . Now, B is in descending order.

Corollary 2.8. Let π = AB ∈ Sn, where B is a descending sequence. Then, π is (|A|+ 1)-
stack-sortable.

Proof. Consider the stack-sorting algorithm on π. First, the algorithm iterates through the
values in A. When the algorithm reaches the first element of B , b1, this element will at some
point be pushed onto the stack. Then, the other values will be pushed onto the stack on top
of b1, since B is strictly decreasing. So, the output will end in the values of B (and possibly
some values of A) in increasing order.

Now, after one iteration of the stack-sorting algorithm, s(π) can be written as A′B ′, where
B ′ is some ascending sequence and |A′| ≤ |A|. So, by Proposition 2.5, s(π) is |A′|-stack-sortable.
So, π is (|A|+ 1)-stack-sortable.

We illustrate Corollary 2.8 with an example.

Example 2.9. The permutation π = 7541632 can be decomposed into A = 7541 and B = 632,
with |A| = 4. We have s(π) = 1452367, s2(π) = 1423567, and s3(π) = 1234567. Hence, π is
3-stack-sortable.

Remark 2.10. Note that by a similar proof to Corollary 2.8, and using Remark 2.7, π is
exactly (|A|+ 1)-stack-sortable if and only if B starts with n and ends with 1.

We will discuss stack-sorting algorithm and stack-sorting polytopes further in Subsections
2.4 and 2.5.
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2.3 Convex lattice polytopes

This subsection provides background on convex lattice polytopes and their discrete
geometry. For more information on polytopes, see [15].

The convex hull of a set of points S , conv(S), is the smallest convex set containing S . A
convex polytope P is the convex hull of a finite set S = {x1, ... , xk}:

P = conv(S) :=

{
k∑

i=1

λixi : λi ∈ R≥0 where
k∑

i=1

λi = 1

}
.

(0, 0) (1, 0)

(0, 1)

Figure 1: The convex hull of the set {(0, 0), (1, 0), (0, 1)}.

A convex lattice polytope is a convex polytope whose vertices are lattice points. For the
rest of the paper, all polytopes discussed will be convex lattice polytopes, unless otherwise
specified.

The affine span of a polytope P , span(P), is the smallest affine space that contains P :

span(P) = {x+ λ(y − x) : x, y ∈ P ,λ ∈ R}.

The dimension of a polytope P is the dimension of span(P).
We call a polytope with dimension d a d -polytope. If a polytope in Rn has dimension n,

we refer to it as full-dimensional. A d -polytope P must contain at least d + 1 vertices. If P
contains exactly d + 1 vertices, we refer to P as a simplex. For instance, the 2-simplex is a
triangle.

Now, we describe the volumes of polytopes. We denote the Euclidean volume of polytope
P as EVol(P).

Definition 2.11. The relative volume of a polytope P, vol(P), is the Euclidean volume of
P , normalized to span(P).

We can compute the relative volume of P by computing its Euclidean volume, then dividing
by the Euclidean volume of a fundamental parallelepiped. A fundamental parallelepiped of
an affine space is a parallelepiped whose generating vectors span the integer points of the
space. All fundamental parallelepipeds have the same volume. For further explanation of the
fundamental parallelepiped, see [1], which refers to the fundamental parallelepiped as the
primitive parallelotope.

We use this discrete geometry throughout the paper to study a specific class of polytopes,
which we introduce in Subsection 2.4.
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2.4 Stack-sorting polytopes

We now introduce the focus of our research, stack-sorting polytopes. For the rest of this
paper, we will make no distinction between permutations of Sn and the corresponding points
in Rn.

Definition 2.12. Given a permutation π, we define the stack-sorting polytope of π as the
convex hull of Sπ.

Example 2.13. Let π = 231. We have s(π) = 213 and s2(π) = 123. So, Sπ =
{231, 213, 123}, and the stack-sorting polytope of π is conv({231, 213, 123}).

123

213

231

Figure 2: The simplex conv(Sπ) as described in Example 2.13.

Note that all permutations π ∈ Sn lie on the (n−1)-dimension hyperplane x1+x2+· · ·+xn =
1 + 2 + · · · + n. So, we will use the concepts of Euclidean volume and relative volume to
study these polytopes.

2.5 Special permutations

In this section, we discuss permutations of Sn that end in n1. The permutations are
referred to as Ln1 permutations in [11].

Definition 2.14. For π ∈ Sn, π is an Ln1 permutation if π ends with n1. Here, L is some
permutation of {2, 3, ..., (n − 1)} and Ln denotes the set of Ln1 permutations of length n.

Both Remark 2.7 and Remark 2.10 are sufficient to prove Theorem 3.11 of [11], which we
restate here:

Corollary 2.15 (Theorem 3.11, [11]). A permutation π ∈ Sn is exactly (n−1)-stack sortable
if and only if π ends in n1.

We discuss Ln1 permutations further in Section 4.
The authors of [11] also prove that all stack-sorting polytopes of Ln1 permutations are

simplices. In the next section, we generalize this result.
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3 Geometry of conv (Sπ)

In this section, we prove that any permutation π ∈ Sn guarantees that conv(Sπ) forms a
simplex.

Definition 3.1. Let π ∈ Sn be some permutation. We call a value πk of π a fixed value if
πk = k .

Lemma 3.2. Suppose π ∈ Sn ends in exactly k fixed values. Then, s(π) ends in at least
k + 1 fixed values.

Proof. All values of π greater than n − k are fixed. So, the value n − k is the largest of the
first n − k values in π.

We pass π through the stack-sorting algorithm. When the algorithm reaches the value
n− k , we pop the remaining values off the stack and push n− k onto the bottom of the stack.

When the algorithm reaches πn−k+1, n − k will still be on the bottom of the stack. We
pop the remaining values off the stack and n − k is written in the (n − k)th position. The
algorithm will then push and pop the remaining values of π, which are in ascending order.

So, s(π) ends in at least k + 1 fixed values.

Theorem 3.3. Let π ∈ Sn be exactly k-stack-sortable. Then, △ := conv(Sπ) is a k-simplex.

Proof. We show that △ is a simplex by showing the vectors in Sπ are affinely independent.
There are k + 1 vectors in Sπ, with sk = e. Now, subtract e component-wise from each

vector in Sπ \ {e}. We show these k vectors are linearly independent.
From Lemma 3.2, we know that s i+1(π) must end in a strictly greater number of fixed

points than s i(π). So, s i+1(π)− e ends in strictly more zeros than s i(π).
Now, consider the k × n matrix such that the i th row is the vector s i(π)− e. The i th row

ends in strictly more zeros than all rows above.
Now, flip this matrix across a vertical axis, which is equivalent to relabeling our variables.

Here, the i th row has strictly more leading zeros than the above rows. We also have no
zero rows. So, our matrix is in Row Echelon Form, and our vectors s i(π) − e are linearly
independent. So, the k + 1 vectors s i(π) are affinely independent. Therefore, △ is a
k-simplex.

Example 3.4. Let π = 31452. We have Sπ = {31452, 13425, 13245, 12345}. The convex hull
of Sπ forms a 3-simplex.

4 Volume of conv (Sπ)

This section focuses on the relative and Euclidean volumes of Ln1 simplices. We prove
the relative volume is 1 and the Euclidean volume is

√
n for all Ln1 simplices.

Lemma 4.1. Let B be the set {(1,−1, 0, ... , 0), (0, 1,−1, ... , 0), ... , (0, ... , 0, 1,−1)} in Rn,
and let H be the hyperplane x1 + x2 + · · ·+ xn = 1 + 2 + · · ·+ n. Then, B forms a basis for
the lattice Zn ∩ H.
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31452

13425

13245

12345

Figure 3: The 3-simplex formed by Sπ in Example 3.4.

Proof. We show that B forms a basis for the lattice Zn ∩ H ′, where H ′ is the hyperplane
x1 + x2 + ... + xn = 0, a translation of H . Consider an arbitrary lattice point a = (a1, a2, ... , an)
on H ′. Note that a must satisfy an = −(a1 + a2 + · · · + an−1). We can take the following
linear combination:

a1 · (1,−1, 0, 0, ... , 0) + (a1 + a2) · (0, 1,−1, 0, ... , 0) + ... + (a1 + a2 + · · ·+ an−1) · (0, 0, ... , 0, 1,−1)

= (a1, a2, ..., an−1,−(a1 + a2 + · · ·+ an−1))

= (a1, a2, ... , an).

So, the vectors in B span the lattice.
Also, the vectors in B are linearly independent. So, B forms a basis for Zn ∩ H ′. Thus, B

also forms a basis for Zn ∩ H .

Now, we prove that the Euclidean volume of the fundamental parallelepiped of an Ln1
simplex is

√
n.

Lemma 4.2. Let π ∈ Ln. The fundamental parallelepiped for span(conv(Sπ)) has Euclidean
volume

√
n.

Proof. Note that conv(Sπ) is an (n − 1)-dimension polytope living on the (n − 1)-dimension
hyperplane

H := {x ∈ Rn | x1 + x2 + · · ·+ xn = 1 + 2 + · · ·+ n}.
So, span(conv(Sπ)) = H . From Lemma 4.1,

B = {(1,−1, 0, 0, ... , 0), (0, 1,−1, 0, ... , 0), (0, 0, 1,−1, ... , 0), ... , (0, ... , 0, 1,−1)}
forms a basis for the lattice Zn ∩ H . We can take these basis vectors as generators for a
fundamental parallelepiped .

Using Theorem 7 of [13], we calculate the Euclidean volume of by EVol( )2 = det
(
AAT

)
,

where A is the n − 1× n matrix whose rows are the vectors in B. We evaluate:

AAT =


1 −1 0 · · · 0
0 1 −1 · · · 0
...

...
...

. . .
...

0 0 0 · · · −1




1 0 · · · 0
−1 1 · · · 0
0 −1 · · · 0
...

...
. . .

...
0 0 · · · −1

 =


2 −1 0 · · · 0
−1 2 −1 · · · 0
0 −1 2 · · · 0
...

...
...

. . .
...

0 0 0 · · · 2

 .
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Note that AAT is (n− 1)× (n− 1). Call this matrix An−1, and call its determinant dn−1. We
compute dn−1 by cofactor expansion across the top row:

dn−1 = 2det(An−2)− (−1) det

([
−1 −1 0 0 ... 0
0 An−3

])
.

For this second matrix, we again expand across the top row:

dn−1 = 2det(An−2)− (−1)(−1) det(An−3)

= 2dn−2 − dn−3.

Now, we show that dn−1 = n by induction.
We have base cases of n = 2 and n = 3:

d1 = det
([
2
])

= 2, and

d2 = det

([
2 −1
−1 2

])
= 3.

For our inductive hypothesis, we assume dn−2 = n− 1 and dn−3 = n− 2. For our inductive
step, we show dn−1 = n. We have dn−1 = 2dn−2 − dn−3 = 2(n − 1) − (n − 2) = n. So,
EVol( )2 = n, and the Euclidean volume of is

√
n.

Now that we have established the Euclidean volume of the fundamental parallelepiped,
we find the Euclidean volume of the simplex itself.

Lemma 4.3. Let π ∈ Ln. Then, for 0 ≤ k ≤ n − 2, the vector sk(π)− e ends with

((−n + k + 1), 0, 0, ... , 0).

Here, sk(π)− e ends with exactly k zeros.

Proof. By Theorem 3.5 of [11], sk(π) ends with (1, n − k + 1, n − k + 2, ... , n). So, sk(π)− e
ends with ((−n + k + 1), 0, 0, ... , 0), with k zeros.

Lemma 4.4. Let π ∈ Ln. Let △ = conv(Sπ). Then, the Euclidean volume EVol(△) =
√
n.

Proof. Let wi = s i(π) − e for all s i(π) ∈ Sπ, and let Qi be the set {wn−1,wn−2, ...,wn−i}.
That is, Qi is the set of the last i w-vectors. Let △i be the convex hull of Qi . We show
EVol(△i) =

√
i for i ≥ 2 by induction.

For our base case, i = 2. We have sn−1(π) = (1, 2, ... , n), so wn−1 = (0, 0, ... , 0). By
Lemma 4.3, we have wn−2 = (1,−1, 0, 0, ..., 0). So,

EVol(△2) = ||wn−2 −wn−1|| =
√
2.

For our inductive hypothesis, assume EVol(△i) =
√
i . We want to show EVol(△i+1) =√

i + 1.
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By Lemma 4.3, the vectors in Qi have xi+1 = xi+2 = · · · = xn = 0. So, these vectors lie
on the hyperplane x1 + x2 + · · ·+ xi = 0, with xi+1 = · · · = xn = 0. By Theorem 3.3, △i is a
simplex, so the i vectors in Qi span this (i − 1)-dimensional hyperplane. Hence,

EVol(△i+1) =
EVol(△i)h

i
,

where h is the height of the altitude from △i to wn−(i+1). We show that h =
√
i(i + 1).

By Lemma 4.3, wn−(i+1) has xi+1 = −i . So, the distance from wn−(i+1) to the hyperplane
xi+1 = 0 is i . Call the projection of wn−(i+1) onto this hyperplane v.

Now, we compute the distance from v to the hyperplane x1 + x2 + · · · + xi = 0. This
hyperplane has unit normal vector n = 1√

i
(1, 1, ... , 1, 0, 0, ... , 0) (with i ones and n − i zeros).

So, the distance from v to this hyperplane is n · v. Note that (
√
i · n) · v equals the sum of

the first i entries in v.
We know the point wn−(i+1) lies on the hyperplane

xi+1 = −(x1 + x2 + · · ·+ xi).

Also, by Lemma 4.3, wn−(i+1) has xi+1 = −i . So, the sum of the first i entries of v is i .

Therefore, the distance from v to the hyperplane x1 + x2 + · · ·+ xi = 0 is
√
i .

These two distances are perpendicular. So, we compute h:

h =

√√
i
2
+ i2 =

√
i(i + 1).

Therefore,

EVol(△i+1) =
EVol(△i)h

i
=

√
i
√

i(i + 1)

i
=

√
i + 1.

So, EVol(△) = EVol(△n) =
√
n.

We illustrate Lemma 4.4 with an example.

Example 4.5. Let π = 231. We have Sπ = {(2, 3, 1), (2, 1, 3), (1, 2, 3)}. So,

w0 = (1, 1,−2),w1 = (1,−1, 0), and w2 = (0, 0, 0).

We have Q2 = {(0, 0, 0), (1,−1, 0)}, so △2 is a polytope with Euclidean volume
√
2.

We also have Q3 = {(0, 0, 0), (1,−1, 0), (1, 1,−2)}. The point (1, 1,−2) lies a distance of 2

from the plane x3 = 0. The projection (1, 1, 0) has a distance of
(

1√
2
(1, 1, 0)

)
· (1, 1, 0) =

√
2

from the line x1 + x2 = 0. So, the point (1, 1,−2) lies a distance of
√
6 from conv(Q2), and

the volume of △3 is √
2
√
6

2
=

√
3.

See Figure 4 for a visualization of △2 and △3.
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11(−2)

1(−1)0

000

1(−1)0

000
√
2

√
2

√
6

Figure 4: △2 and △3 for π = 231, as described in Example 4.5. The length of △2 is
√
2 and

the area of △3 is
√
3.

Theorem 4.6. Let π ∈ Ln. The relative volume of △ = conv(Sπ) is 1.

Proof. We know vol(△) = EVol(△)
EVol( )

, where represents the fundamental parallelepiped for

span(Sπ). From Lemmas 4.2 and 4.4, we have

EVol( ) = EVol(△) =
√
n.

So,

vol(△) =

√
n√
n
= 1.

5 Lattice-point enumeration of stack-sorting simplices

In this section, we focus on the lattice points of stack-sorting simplices.

5.1 Ehrhart function and series

We give a brief introduction to Ehrhart theory, the study of lattice-point enumeration of
dilates of polytopes. The tth dilate tP of polytope P is the set {tx : x ∈ P}. The lattice-point
enumerator L(P , t) of P counts the number of lattice points in the tth dilate of P :

L(P ; t) := |tP ∩ Zn|.

If P is a lattice polytope, this function is a polynomial in t, with degree equal to the dimension
of P . We can use the Ehrhart polynomial of P to obtain the Ehrhart series Ehr(P ; z):

Ehr(P ; z) := 1 +
∑
t∈Z>0

L(P ; t)z t =
h∗(P ; z)

(1− z)dim(P)+1
.

The h∗-polynomial, h∗(P ; z) = 1+h∗1z+· · ·+h∗dim(P)z
dim(P), has nonnegative integer coefficients.

For more information on Ehrhart theory, see [2].
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5.2 Hollow stack-sorting simplices

In [11], the authors show that permutations of form 234 · · · n1 generate hollow stack-
sorting simplices. In this section, we show that any permutation of the form 2Ln1 generates
a hollow stack-sorting simplex. A polytope P is hollow if P contains no interior points. Note
that a hollow polytope can still contain boundary points.

Lemma 5.1. Let π ∈ Sn be of the form 2Ln1, where L is any permutation of {3, 4, ..., (n−1)}.
Then, every point s i(π) ∈ Sπ, besides e, begins with 2.

Proof. Consider the stack-sorting algorithm on π. First, 2 is pushed onto the stack. Then, if
the next value in the permutation is not 1, 2 will be popped from the stack.

Also, by Theorem 3.5 of [11], we know that sk(π) ends with (n−k)1(n−k+1)(n−k+2) ... n
for k < n − 1. So, for k < n − 2, the value 1 is not one of the first two elements of sk(π). So,
for k < n − 1, sk(π) begins with 2.

Proposition 5.2. Let π ∈ Sn be of the form 2Ln1, where L is any permutation of {3, 4, ..., (n−
1)}. The simplex △ := conv(Sπ) is hollow. In particular, any non-vertex lattice point of △
lies on the facet formed by the convex hull of Sπ \ {e}.

Proof. Call the vertices of △ v1,v2, ...,vn, with vn = e. Then, by the vertex description of
△, we have

△ = {λ1v1 + λ2v2 + · · ·+ λnvn : all λk ≥ 0 and λ1 + λ2 + · · ·+ λn = 1}.

We want to show that there are no lattice points on △ with 0 < λn < 1.
Suppose to the contrary that there exists a lattice point p ∈ Rn on △ with 0 < λn < 1.

Now, consider the first value in p, p1. By Lemma 5.1, the first value of vk is 2 for 1 ≤ k < n.
Also, we know the first value of vn = e is 1. So,

p1 = 2λ1 + 2λ2 + · · ·+ 2λn−1 + 1λn = 2(1− λn) + λn = 2− λn.

However, 0 < λn < 1, so, 1 < 2 − λn < 2. This tells us that p cannot be a lattice point,
giving us a contradiction. Therefore, there are no lattice points on △ with 0 < λn < 1.

Proposition 5.3. Let π ∈ Sn be of the form 2Ln1, where L is any permutation of {3, 4, ..., (n−
1)}. Let △1 := conv(Sπ) and △2 := conv(Sπ \ {e}). Then, △1 and △2 have the same
h*-polynomial.

Proof. Call the vertices of △1 v1,v2, ...,vn, with vn = e. Then, the vertices of △2 are
v1,v2, ...,vn−1.

By Corollary 3.11 in [2], given a vertex set {v1,v2, ...,vn}, h*k equals the number of
integer points in

{λ1v1 + λ2v2 + · · ·+ λnvn : all 0 ≤ λi < 1 and λ1 + λ2 + · · ·+ λn = k}. (5.1)

We want to show that all integer points on △1 have λn = 0. This proof follows similarly
to the proof of Proposition 5.2.
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Suppose to the contrary that there exists a lattice point p ∈ Rn that satisfies (5.1) with
arbitrary k and 0 < λn < 1. Now, consider the first value in p, p1. By Lemma 5.1, the first
value of vk is 2 for 1 ≤ k < n. Also, we know the first value of vn = e is 1. So,

p1 = 2λ1 + 2λ2 + · · ·+ 2λn−1 + 1λn = 2(k − λn) + λn = 2k − λn.

However, 0 < λn < 1, so 2k − 1 < 2k − λn < 2k . So, p cannot be an integral point, and we
have a contradiction.

Therefore, for arbitrary k , an integral point satisfies (5.1) for △1 if and only if that point
satisfies (5.1) for △2. So, △1 and △2 have the same h*-polynomial.

Remark 5.4. We can view △1 as a pyramid over △2. Since e lies a distance of 1 from the
hyperplane x1 = 2, we can apply Theorem 2.4 in [2]. Proposition 5.3 follows as a corollary.

5.3 Counting integer points

In this subsection, we give an upper bound for the number of integer points in a stack-
sorting simplex P generated by an Ln1 permutation. This number includes interior points,
boundary points, and vertex points.

A triangulation of a polytope P is a partition of P into simplices whose vertices are lattice
points. These simplices can overlap at a facet, but they cannot otherwise intersect.

Proposition 5.5. Let π ∈ Sn be a permutation of the form Ln1, and let P be the stack-
sorting simplex generated by π. Then, P has a maximum of (n − 1)! + (n − 1) lattice
points.

Proof. Our polytope P is an (n− 1)-polytope, and the smallest (n− 1)-simplices have relative
volume 1

(n−1)!
. Also, by Theorem 4.6, P has relative volume 1. So, any triangulation of P

would have at most (n − 1)! simplices.
Now, for the sake of contradiction, assume P has at least (n − 1)! + n lattice points.

Exactly n of these lattice points will be vertex points. We first triangulate just this vertex
set. Then, we add the lattice points to our triangulation, one at a time.

Each new lattice point would lie in at least one simplex in our triangulation. Then, we
can triangulate this simplex into two or more simplices using this lattice point. So, each new
lattice point would add at least 1 simplex to our triangulation of P .

So, with (n − 1)! non-vertex lattice points, our polytope P could be triangulated using at
least (n − 1)! + 1 simplices. However, we have already shown that any triangulation of P
must have at most (n − 1)! simplices.

So, we have a contradiction, and P must have at most (n− 1)!+ (n− 1) lattice points.

For small values of n, there are stack-sorting simplices with close to (n − 1)! + (n − 1)
lattice points, but as n grows, this approximation becomes very weak. A stronger upper
bound may lie closer to 2n−1. The permutation 234586791 generates the smallest stack-sorting
simplex with greater than 2n−1 lattice points.
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Remark 5.6. Readers may conjecture that all stack-sorting d -polytopes have a unimodular
triangulation (i.e., a triangulation where all simplices have relative volume 1

d!
). Unfortunately,

the permutation 34251 generates a stack-sorting simplex without a unimodular triangulation.
So, we cannot generate a lower bound for the number of lattice points in a polytope P in the
same way we give an upper bound.

6 Questions, conjectures, and future research

When studying and discussing stack-sorting polytopes, we encountered many ideas that
may be useful areas for further exploration. We pose the following questions to serve as
directions for future research.

1. What patterns hold regarding the relative volume of stack-sorting polytopes?

2. For π = 12543, vol(conv(Sπ)) = 2. Which choices of π ∈ Sn form stack-sorting
simplices with relative volume greater than 1? What is the maximum volume of such a
polytope?

3. What is the maximum Euclidean volume of a stack-sorting polytope? We conjecture
that this value is

√
n for permutations π ∈ Sn, the volume of a polytope generated by

an Ln1 permutation.

4. Some permutations, like 23451, generate stack-sorting polytopes with unimodular
triangulations, whereas some, like 34251, do not. Which stack-sorting polytopes have
unimodular triangulations?

5. What is the maximum number of lattice points in a stack-sorting simplex?

6. For n ≤ 8, the permutation of the form 234 ... n1 generates a stack-sorting simplex
containing the maximum lattice points for that value of n. This does not hold for n > 8.
Is there a pattern regarding which stack-sorting simplex for a given n has the highest
lattice point count?

7. Does there exist a combinatorial interpretation for the h∗-coefficients of stack-sorting
simplices?
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[3] Miklós Bóna, A survey of stack sortable permutations, in 50 years of combinatorics,
graph theory, and computing, Discrete Math. Appl. (Boca Raton), pp. 55–72, CRC
Press, Boca Raton, FL, 2020.
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