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Abstract

Vacillating parking functions are parking functions in which a car only tolerates
parking in its preferred spot, in the spot behind its preferred spot, or in the spot
ahead of its preferred spot, which they check precisely in that order. Our main re-
sult characterizes the possible permutations that arise as parking outcomes from the
parking process of nondecreasing vacillating parking functions, which are vacillating
parking functions in which every car prefers a spot at least the preference of the pre-
vious car. We show that a permutation is the outcome of a nondecreasing vacillating
parking function if and only if the permutation is a product of commuting adjacent
transpositions. This readily implies that the number of distinct permutations arising
as outcomes of nondecreasing vacillating parking functions is a Fibonacci number. We
also show that the number of nondecreasing vacillating parking functions that have
a fixed outcome consisting of k commuting adjacent transpositions is always a power
of two. We conclude by using these results to give a new formula for the number of
nondecreasing vacillating parking functions.

1 Introduction

Imagine having a one-way street with exactly n parking spots numbered increasingly from 1
to n. At the beginning of the street, there is a queue of n cars, each with a preferred parking
spot. For each i, we let ai ∈ [n] = {1, 2, . . . , n} denote the preference of car i. Cars enter
the street in order i = 1, 2, . . . , n and attempt to park. For each i ∈ [n], car i attempts to
park in spots ai, ai − 1, ai + 1, in this order and if those spots exist. In this way, for each
i ∈ [n], car i “vacillates” in its attempt to park, by first checking its preferred spot ai, then
by checking the spot immediately behind its preferred spot ai− 1 (if it exists), and lastly by
checking the spot immediately ahead of its preferred spot ai+1 (if it exists). If none of those
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spots are available to park in, then we say parking fails. If all cars are able to park based
on this vacillating parking rule, then we say that the preference list α = (a1, a2, . . . , an) is
a vacillating parking function. A vacillating parking function α = (a1, a2, . . . , an) is called a
nondecreasing vacillating parking function if ai ≤ ai+1 for all 1 ≤ i ≤ n − 1. We let VPFn

be the set of vacillating parking functions and we let VPF↑
n denote the set of nondecreasing

vacillating parking functions.
Not every preference list is a vacillating parking function. For example, (4, 3, 3, 1, 4) is a

vacillating parking function and we illustrate the final parking outcome (the order that the
cars ultimately park on the street) in Figure 1. On the contrary, one can readily check that
the preference list (5, 4, 3, 3, 1, 1) is not a vacillating parking function since the last car fails
to park.

Figure 1: The parking outcome of the vacillating parking function (4, 3, 3, 1, 4).

Fang, Harris, Kamau, and Wang were the first to define and study vacillating parking
functions [2]. Among their contributions, Fang et al. give a way to determine if a preference
list is a vacillating parking function and a recursive formula for the number of vacillating
parking functions. They also show [2, Corollary 3.4] that the number of nondecreasing
vacillating parking functions of length n satisfies

|VPF↑
n| =

(1 +
√
2)n + (1−

√
2)n

2
. (1.1)

As n grows, the sequence |VPF↑
n| is precisely the numerators of continued fraction convergents

to
√
2, which are known as the Pell-Lucas numbers, see sequence A001333 in the OEIS [5].

Our main result is concerned with the possible outcomes of nondecreasing vacillating
parking functions. Recall that if all cars park under a given parking preference α, then the
resulting parking configuration is called the parking outcome of α, which is a permutation
of the numbers in the set [n]. We let Sn denote the set of permutations of [n] and write
permutations in one-line notation π = π(1)π(2) · · · π(n). For any 1 ≤ i ≤ n − 1, we also
make use of the notation si to denote the adjacent transposition that swaps i and i+1. We
now introduce the outcome function O : VPFn → Sn defined by O(α) = π(1)π(2) · · · π(n)
where π(i) = j means that given the preference list α, car j parked in spot i on the street. In
Figure 1, the outcome of the vacillating parking function α = (4, 3, 3, 1, 4) meant spots 1, 2,
3, 4, 5 were occupied by the cars 4, 3, 2, 1, 5, in that order. Hence, O((4, 3, 3, 1, 4)) = 43215.

Our main result characterizes the possible parking outcomes arising from the parking
process of nondecreasing vacillating parking functions.
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Theorem 1.1. Let π ∈ Sn. Then π = O(α) for some α ∈ VPF↑
n if and only if π =

si1si2 · · · sik is a product of commuting adjacent transpositions. That is, for all n ≥ 1,

{O(α) : α ∈ VPF↑
n} = {π ∈ Sn : π is a product of commuting adjacent transpositions} .

Theorem 1.1 readily implies that the number of distinct outcomes of nondecreasing vac-
illating parking functions in VPF↑

n is given by Fn, the nth Fibonacci number, where F0 = 1,
F1 = 2, and Fn+1 = Fn + Fn−1 for all n ≥ 2. We state this result formally.

Corollary 1.2. For all n ≥ 1, |{O(α) : α ∈ VPF↑
n}| = Fn, the nth Fibonacci number.

Next we fix π to be a commuting product of adjacent transpositions and give a count for
the number of nondecreasing vacillating parking functions whose parking outcome is π.

Theorem 1.3. Fix π ∈ Sn, a commuting product of k adjacent transpositions. If O−1(π) =
{α ∈ VPF↑

n : O(α) = π}, then

|O−1(π)| =

{
2n−2k if π(1) = 2 and π(2) = 1

2n−2k−1 otherwise.

With the above results at hand, we conclude by giving a new formula for the number of
nondecreasing vacillating parking functions.

Theorem 1.4. If n ≥ 1, then

|VPF↑
n| =

⌊n
2
⌋∑

k=1

(
n− 1− k

k − 1

)
2n−2k +

⌊n−1
2

⌋∑
k=0

(
n− 1− k

k

)
2n−1−2k.

It is worth noting that while Theorem 1.4 and Equation (1.1) both provide formulas for
counting nondecreasing vacillating parking functions of length n, it is clear in the formulation
of Theorem 1.4 that this is an integer sequence, but this property is not so obvious from
Equation (1.1).

Remark 1.5. Vacillating parking functions are inspired by parking functions, which are
those preference lists allowing all cars to park when they park in their preference if avail-
able, or they park in the first spot available past their preference. Parking functions were
introduced by Konheim and Weiss [3] who showed there are (n + 1)n−1 parking functions
with n cars and n parking spots. Since then, there have been numerous variants of park-
ing functions and parking functions have been shown to have connections to a wide variety
of mathematical areas and to interesting integer sequences. For example, when keeping
track of the number of lucky cars, those cars that park in their preferences, Aguillon et al.
showed a connection to the tower of Hanoi [1], while Harris et al. showed a connection to
the Quicksort algorithm [4]. It is remarkable how simple parking problems can lead to such
nice mathematics.
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2 Proofs

Not every permutation can be the outcome of a nondecreasing vacillating parking function
and we illustrate this in the next example.

Example 2.1. Can the permutation 231 be the outcome of a nondecreasing parking function?
Suppose this is the case and the preference list is given by (a1, a2, a3) with a1 ≤ a2 ≤ a3. The
outcome being 231 implies that car 1 parked in spot 3, car 2 in spot 1, and car 3 in spot 2.
In order for car 1 to park in spot 3 it must have preferred that parking spot. Hencea1 = 3.
Car 2 parked in spot 1, and at this point in the parking process, spot 2 would have been
empty. So, the only way for car 2 to park in spot 1 is if it prefers that parking spot. Hence,
a2 = 1. But now a1 = 3 and a2 = 1, and so a1 ≰ a2. Thus 231 is not the outcome of any
nondecreasing vacillating parking function.

We are now ready to prove our first result.

Proof of Theorem 1.1. To begin, let us assume that π = O(α) for some α ∈ VPF↑
n. In the

forward direction of the proof we proceed by contradiction. Suppose that π has cycle notation
π = si1si2 · · · sik , where we omit all fixed points, and which does not consist of commuting
adjacent transpositions. Then consider x, y to be the smallest distinct indices 1 ≤ x, y ≤ n−1
such that sxsy ̸= sysx. Without loss of generality assume that x < y. Then sxsy must
contain consecutive integers and y = x+1 so that sxsy = sxsx+1 = (x, x+1)(x+1, x+2) =
(x, x+ 1, x+ 2) is a length three cycle and this means that π(x) = x+ 1, π(x+ 1) = x+ 2,
and π(x+ 2) = x. But recall that π(a) = b means that car a parked in spot b. Hence

� π(x) = x+ 1, implies that car x with preference ax parked in spot x+ 1,

� π(x+1) = x+2, implies that car x+1 with preference ax+1 parked in spot x+2, and

� π(x+ 2) = x, implies that car x+ 2 with preference ax+2 parked in spot x.

However α = (a1, a2, . . . , an) ∈ VPF↑
n and so ax ≤ ax+1 ≤ ax+2. We now recall [2, Lemma

3.2]: If α = (a1, a2, . . . , an) ∈ VPF↑
n, then i − 1 ≤ ai ≤ i + 1 for all i ∈ [n]. By this lemma

we must have that

x− 1 ≤ ax ≤ x+ 1

x ≤ ax+1 ≤ x+ 2 (2.1)

x+ 1 ≤ ax+2 ≤ x+ 3 (2.2)

By eq. (2.2), the only way for car x+2 to park in spot x is for it to have preferred spot x+1
(the smallest preference it could have) and back into spot x. Then by eq. (2.1), car x + 1
would have to have preference x ≤ ax+1 ≤ x + 1 (since α is nondecreasing). But if that is
the case, then car x + 1 would have preference ax+1 = x or ax+1 = x + 1. If ax+1 = x, then
having arrived prior to car x+ 2, car x+ 1 would have parked in spot x, contradicting that
π = O(α). If ax+1 = x + 1, then car x + 1 would find spot x + 1 occupied by car x, but
would back into spot x. Once again contradicting that π = O(α). Thus, no such index x
exists and π is the product of commuting adjacent transpositions, as claimed.
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For this converse direction we fix a permutation π = si1si2 · · · sik , which is the product of k
commuting adjacent transpositions with 1 ≤ i1 < i2 < · · · < ik ≤ n−1 being nonconsecutive
integers. We now construct a nondecreasing vacillating parking function which has parking
outcome π. Consider α = (a1, a2, . . . , an) where

aj =

{
iℓ + 1 if j = iℓ for some 1 ≤ ℓ ≤ k

j otherwise.

Since α satisfies the inequality condition of [2, Lemma 3.2] we know that α ∈ VPF↑
n. The

parking outcomes are as follows:

� car j parks in spot j whenever j ̸= iℓ, iℓ + 1 for all 1 ≤ ℓ ≤ k,

� car iℓ parks in spot iℓ + 1 for all 1 ≤ ℓ ≤ k, and

� car iℓ + 1 parks in spot iℓ for all 1 ≤ ℓ ≤ k (here the car backs up into that spot).

This shows that O(α) = si1si2 · · · sik = π, as desired.

Theorem 1.1 shows that the only possible outcomes of nondecreasing vacillating parking
functions are permutations made up of commuting adjacent transpositions i.e., permutations
of the form si1si2 · · · sik , where 1 ≤ i1 < i2 < · · · < ik ≤ n − 1 are nonconsecutive integers.
To count all such outcome permutations we need to count the number of ways to select
nonconsecutive indices from the set [n − 1]. The number of ways to select nonconsecutive
integers from the set [n− 1] is Fn, the nth Fibonacci number. Here F0 = 1 and F1 = 1, and
Fn+1 = Fn + Fn−1 for all n ≥ 2. This proves Corollary 1.2.

Now that we know how many distinct outcomes there are, for each such outcome π
we want to count how many nondecreasing vacillating parking functions yield that parking
outcome. Before proceeding to prove the associated result (Theorem 1.3) we illustrate it via
an example.

Example 2.2. Let n = 4. By Corollary 1.2 there are F4 = 5 outcomes of nondecreasing
vacillating functions, which one can confirm they are e = 1234, s3 = 1243, s2 = 1324, s1 =
2134, s1s3 = 2143. For each of these outcomes we now count the number of preferences
each car could have so as to end up parking in those spots using a nondecreasing vacillating
parking function.

� For e = 1234, car 1 has only option for spot 1, while each car after that can either
prefer the spot they parked in or the previous. This gives a total of 1 · 2 · 2 · 2 = 8
possible nondecreasing vacillating parking functions with outcome e = 1234. Note
e = 1234 is the product of k = 0 adjacent transpositions and e(1) = 1 ̸= 2, so the
count agrees with 2n−2k−1 = 24−1 = 8, as given in Theorem 1.3.

� For s3 = 1243, car 1 has only option for spot 1, car 2 can either prefer the spot it
parked in or the previous, and cars 3 and 4 can only prefer spot 4. This gives a total
of 1 · 2 · 1 · 1· = 2 possible nondecreasing vacillating parking functions with outcome
s3. Note s3 = 1243 is the product of k = 1 adjacent transposition and s3(1) = 1 ̸= 2,
so the count agrees with 2n−2k−1 = 24−2−1 = 2, as given in Theorem 1.3.
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� For s2 = 1324, car 1 has only option for spot 1, cars 2 can only prefer spot 3, car 3
cannot prefer spots 1 or 2, as otherwise this would not be a nondecreasing vacillating
parking function, so car 3 can only prefer spot 3, and car 4 can prefer either spot 3 or 4.
This gives a total of 1 · 1 · 1 · 2 = 2 possible nondecreasing vacillating parking functions
with outcome s2. Note s2 = 1324 is the product of k = 1 adjacent transposition and
s2(1) = 1 ̸= 2, so the count agrees with 2n−2k−1 = 24−2−1 = 2, as given in Theorem 1.3.

� For s1 = 2134, cars 1 and 2 can only prefer spot 2, so as to come from a nondecreasing
vacillating parking function, while cars 3 and 4 prefer either the spot they park in or
the previous. This gives a total of 1 · 1 · 2 · 2 = 4 possible nondecreasing vacillating
parking functions with outcome s1. Note s1 = 2134 is the product of k = 1 adjacent
transposition and s2(1) = 2 and s2(2) = 1, so the count agrees with 2n−2k = 24−2 = 4,
as given in Theorem 1.3.

� For s1s3 = 2143, cars 1 and 2 can only prefer spot 2, and cars 3 and 4 can only
prefer spot 4. This gives a total of 1 · 1 · 1 · 1 = 1 possible nondecreasing vacillating
parking function with outcome s1s3. Note s1s3 = 2143 is the product of k = 2 adjacent
transposition and s2(1) = 2 and s2(2) = 1, so the count agrees with 2n−2k = 24−2(2) = 1,
as given in Theorem 1.3.

The total count of these four cases is 17, which matches the value given by (1.1) setting
n = 4.

In Example 2.2, we can observe that whenever π = si1si2 · · · sik is a product of k commut-
ing adjacent transpositions, if 1 ∈ {i1, i2, . . . , ik}, then there are 2n−2k many nondecreasing
vacillating parking functions with outcome π, and if 1 /∈ {i1, i2, . . . , ik}, then there are 2n−1−2k

many nondecreasing vacillating parking functions with outcome π. We now prove this result.

Proof of Theorem 1.3. Fix π = si1si2 · · · sik ∈ Sn to be a commuting product of k adjacent
transpositions. Hence I = {i1 < i2 < · · · < ik} ⊆ [n−1] is a set of k nonconsecutive integers.
We make the following observations:

1. Car 1 has a single parking preference, and it always parks where it prefers.

2. For any j ∈ {iℓ, iℓ + 1 : 1 ≤ ℓ ≤ k}, π(j) = j + 1 and π(j + 1) = j. So car j parks in
spot j + 1, and spot j would have been unoccupied upon its attempt to park (as spot
j is where car j + 1 parks). Hence, car j could have only parked in spot j + 1 if it
preferred that spot. Thus, car j has a unique preference. Moreover, car j+1 must also
prefer spot j+1, as preferring spot j would imply that the vacillating parking function
is not nondecreasing. Thus, car j and car j + 1 have a unique preference, whenever
j ∈ {iℓ, iℓ + 1 : 1 ≤ ℓ ≤ k}.

3. For any j /∈ {1, iℓ, iℓ + 1 : 1 ≤ ℓ ≤ k}, π(j) = j. So car j parks in spot j. As the
vacillating parking function is nondecreasing, either car j prefers spot j or spot j − 1.
Thus, car j has 2 preferences, whenever j /∈ {1, iℓ, iℓ + 1 : 1 ≤ ℓ ≤ k}.

Taking the product over these potential preferences still depends on whether 1 ∈ I or not.
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� When 1 ∈ I, i1 = 1, car 1 prefers and parks in spot 2. Then car 2 can only prefer spot
2, backing into spot 1, which ensures the vacillating parking function is nondecreasing.
In this case, car 1 has a single preference, car 2 has a single preference, the cars j > 2
in {iℓ, iℓ + 1 : 2 ≤ ℓ ≤ k} each have a single preference, and the cars j > 2 in
{iℓ, iℓ + 1 : 2 ≤ ℓ ≤ k} each have 2 preferences. Thus the count is given by

1 · 1 · 12(k−1) · 2n−2−2(k−1) = 2n−2k,

as claimed.

� If 1 /∈ I, then case 1 and 2 are disjoint and i1 ≥ 2. In this case, car 1 has a single
preference, the cars j > 1 in {iℓ, iℓ + 1 : 1 ≤ ℓ ≤ k} each have a single preference, and
the cars j > 1 in {iℓ, iℓ + 1 : 1 ≤ ℓ ≤ k} each have 2 preferences. Thus the count is
given by

1 · 12k · 2n−1−2k = 2n−2k−1,

as claimed.

Using our previous results we now prove the formula in Theorem 1.4 for the number of
nondecreasing vacillating parking functions.

Proof of Theorem 1.4. To begin we let I = {i1 < i2 < · · · < ik} ⊆ [n − 1] consist of
k nonconsecutive integers and let π = si1si2 · · · sik . Then for each such subset I we can
construct an outcome π = si1si2 · · · sik . The number of nondecreasing vacillating parking
functions with this outcome depends on whether or not 1 ∈ I as we established in Lemma 1.3.
Hence, we have that

|VPF↑
n| =

⌊n
2
⌋∑

k=1

 ∑
I⊆[n−1], 1∈I, |I|=k

2n−2k

+

⌊n−1
2

⌋∑
k=0

 ∑
I⊆[n−1], 1/∈I, |I|=k

2n−1−2k

 . (2.3)

Note that the limits on the sums account for the minimal and maximal sizes of the sets I
involved, which consist of nonconsecutive integers from the set [n − 1]. We recall that the
minimal and maximal number of nonconsecutive integers that can be selected from the set
[y] is 0 and ⌊y+1

2
⌋, respectively. Using this fact, we can simplify (2.3) as follows

|VPF↑
n| =

⌊n
2
⌋∑

k=1

2n−2k

 ∑
I⊆[n−1], 1∈I, |I|=k

1

+

⌊n−1
2

⌋∑
k=0

2n−1−2k

 ∑
I⊆[n−1], 1/∈I, |I|=k

1

 (2.4)

=

⌊n
2
⌋∑

k=1

(
n− 1− k

k − 1

)
2n−2k +

⌊n−1
2

⌋∑
k=0

(
n− 1− k

k

)
2n−1−2k (2.5)

where (2.4) holds as the power of two is independent of the subset indexing the sum, and
(2.5) follows from how many subsets satisfy the needed conditions. Namely, we recall that
the number of ways to select x nonconsecutive integers from the set [y] is given by

(
x−y+1

x

)
.

This concludes the proof.
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