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Abstract

Let G be a finite multiplicative group of quaternion unit U(H). The G -average of
adjacency (resp., Laplacian) polynomial of a graph G is defined as the arithmetic mean
of the characteristic polynomials of adjacency (resp., Laplacian) matrice of all G -gain
graphs on G. In this paper, we prove that the G -average adjacency (resp., Laplacian)
polynomial of a graph for any non-trivial finite subgroup G of U(H) coincides with
its matching (resp., weighted TU-subgraph) polynomial, which generalizes previous
findings for signed graphs.

1 Introduction

Throughout this paper, all graphs are undirected and simple unless otherwise specified. Let

G be a graph with vertex set V (G) = {v1, v2, · · · , vn} and edge set E(G) ⊆
(
V (G)
2

)
.

Various graph polynomials have been extensively studied, such as the matching polynomial
and weighted TU-subgraph polynomial. The matching polynomial of a graph G, first
introduced in [7], is defined as

M(G, x) =

⌊n2 ⌋∑
t=0

(−1)tΦt(G)xn−2t,

where

Φt(G) =
∣∣∣{Mt(G) : Mt(G) is a matching of G with t edges, 0 ≤ t ≤

⌊n
2

⌋}∣∣∣ .
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Furthermore, a spanning subgraphH of G is called a TU-subgraph, as defined in [17], if every
component of H is either acyclic or unicyclic. Note that the concept of a TU-subgraph in
this paper differs from that in [2], whose components are restricted to trees or odd unicyclic

graphs. The weight of the TU-subgraph H of G is w(H) = 2c
t∏

i=1

|V (Ti)| if H is an union of

disjoint t tree components Ti and c unicyclic components Uj of G. In particular, w(H) = 2c

if H contains no tree components. Accordingly, the weighted TU-subgraph polynomial of G
is defined as

W (G, x) =
n∑

k=0

(−1)k
∑

H∈Hk

w(H)xn−k,

where
Hk = {H : H is a TU-subgraph of G and |E(H)| = k}.

Godsil and Gutman [6] (resp., Zhang and Chen [17]) have shown that the matching
polynomial (resp., the weighted TU-subgraph polynomial) of a graph G is exactly the average
of adjacency (resp. Laplacian) polynomials of all signed graphs on G. Noting that every
signed graph is a special gain graph, now we introduce the definition of gain graphs. Let

H = {h1 + h2i+ h3j+ h4k : h1, h2, h3, h4 ∈ R, i2 = j2 = k2 = ijk = −1}

denote the quaternion algebra equipped with a norm | · | such that |h| =
√

h2
1 + h2

2 + h2
3 + h2

4

for every quaternion h = h1+h2i+h3j+h4k. It can be verified that U(H) = {h ∈ H : |h| = 1}
forms a multiplicative group, i.e., the quaternion unit group. Let Γ be a multiplicative
group of quaternion unit. A graph G = (V (G), E(G)) may be viewed as a directed graph

(V (G),
←−→
E(G)) by thinking of every edge as a pair of oppositely directed arcs. A directed

weighted graph Gξ = (G, ξ) is called Γ-gain graph on a graph G in [3] if the weight function

ξ :
←−→
E(G) → Γ satisfies ξ((vj, vi))ξ((vi, vj)) = 1 for all (vi, vj) ∈

←−→
E(G). The function ξ is

also referred to as a gain function while Γ is called the gain group of Gξ. The images of the
gain function ξ is denoted by Imξ. In particular, an ordinary graph G could be viewed as
the Γ-gain graph G1, where Im1 = {1}. A Γ-gain graph Gξ is signed graph (resp., complex
unit T-gain graph, quaternion unit U(H)-gain graph) if and only if Imξ ⊆ {−1, 1} (resp.,
Imξ ⊆ T = {z ∈ C : |z| = 1}, Imξ ⊆ U(H)). Therefore all of ordinary graphs, signed graphs
and T-gain graphs are special U(H)-gain graphs.

There are many classical results on theory of graph spectra and applications [4]. There
are various generalization on spectra of gain graphs, such as spectra of signed graphs [8, 9], T-
gain graph [11, 13]. Recently, Belardo, Brunetti, Coble, Reff and Skogman extended spectral
theory of T-gain graph to U(H)-gain graph [3].

The adjacency (resp., Laplacian) polynomial is the characteristic polynomial of an ad-
jacency (resp., Laplacian) matrix of a U(H)-gain graph, and the coefficient theorems with
respect to them have been established in [3].

Definition 1.1. Let G be a finite subgroup of U(H), G be a graph withm edges and Σ(G,G )

be the set consisting of all gain functions on
←−→
E(G). Suppose that P (Gξ, x) (resp., Q(Gξ, x))
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is the adjacency (resp., Laplacian) polynomial of a G -gain graph Gξ for some ξ ∈ Σ(G,G ).
Then

P̄G (G, x) =
1

|G |m
∑

ξ∈Σ(G,G )

P (Gξ, x) and Q̄G (G, x) =
1

|G |m
∑

ξ∈Σ(G,G )

Q(Gξ, x)

are called the G -average of adjacency polynomials of G and G -average of Laplacian polyno-
mials of G respectively.

Recall the relationship between the matching polynomial (resp., the weighted TU-subgraph
polynomial) of G and the adjacency (resp., Laplacian) polynomials of all signed graphs on
G. With the notion in Definition 1.1, Godsil and Gutman proved that

P̄{−1,1}(G, x) = M(G, x) (1.1)

in [6, Corollary 2.2] and Zhang and Chen proved that

Q̄{−1,1}(G, x) = W (G, x) (1.2)

in [17, Theorem 2.2].
The aim of this paper is to generalize Eqs. (1.1) and (1.2) for gain graphs. Observing the

gain group of signed graphs is {−1, 1}, it is natural to ask whether the Eq. (1.1) and (1.2)
hold whenever {−1, 1} is replaced by any non-trivial finite subgroup G of U(H). In Section
2, we recall basic results on coefficient theorems with respect to the adjacency and Laplacian
polynomials of the U(H)-gain graph and the classification of all finite subgroups of U(H).
In Section 3, we will prove that Eq. (1.1) and (1.2) hold in the case of any non-trivial finite
subgroup of quaternion units, i.e., the matching (resp., weighted TU-subgraph) polynomial
of a graph is equal to the G -average adjacency (resp., Laplacian) polynomial of this graph
for any non-trivial finite subgroup G of U(H).

2 Preliminaries

2.1 The basic results for U(H)-gain graphs

Let G be a graph and gain function ξ ∈ Σ(G,U(H)). The adjacency matrix MA(Gξ) =
(aij) ∈ (U(H) ∪ {0})n×n of Gξ is defined by

aij =

{
ξ((vi, vj)), if (vi, vj) ∈

←−→
E(G)

0, otherwise
,

and the Laplacian matrix ML(Gξ) of Gξ is defined to be ML(Gξ) = MD(G)−MA(Gξ), where
MD(G) = diag(d(vi) : vi ∈ V (G)) is the degree matrix of G and d(vi) is the degree of vertex
vi. It is clear that MA(Gξ) and ML(Gξ) are both Hermitian for all U(H)-gain graph Gξ.

The Moore determinant of a Hermitian quaternion matrix is defined in [5, 12], written
as Mdet(H) for the Hermitian quaternion matrix H. Moreover,

P (Gξ, x) = Mdet(xIn −MA(Gξ)) and Q(Gξ, x) = Mdet(xIn −ML(Gξ))
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are defined as the adjacency polynomial of Gξ and the Laplacian polynomial of Gξ respec-
tively in [3].

Let ξ(W ) = ξ((v1, v2))ξ((v2, v3)) · · · ξ((vs−1, vs)) be the gain of a walkW = v1v2v3 · · · vs in
Gξ. A U(H)-gain graph Gξ is balanced if ξ(C) = 1 for every cycle C in Gξ. Two U(H)-gain
graphsGξ1 andGξ2 are said to be switching equivalent, written asGξ1 ∼ Gξ2 , if there exists an
invertible diagonal matrix D ∈ (U(H) ∪ {0})n×n such that D∗MA(Gξ1)D = MA(Gξ2), where
D∗ is the conjugate transpose of D. It is obvious that this diagonal matrix D is unitary, and
then two switching equivalent U(H)-gain graphs have the same adjacency (resp., Laplacian)
polynomial. The function ζ(vi) = Dii, i = 1, 2, · · · , |V (G)| is called switching function and
the gain function ξ2 could be written as ξζ1 .

Lemma 2.1. [3, Lemma 4.1 and 6.1] Two switching equivalent U(H)-gain graphs have the
same adjacency (resp., Laplacian) polynomial and adjacency (resp., Laplacian) spectrum.

The next result answers what are the most simple U(H)-gain graphs up to switching
equivalence.

Lemma 2.2. [16, The proof of Lemma 5.3] Let G be a graph and F be a spanning forest
of G. Then for any gain function ξ ∈ Σ(G,U(H)), there exists a U(H)-gain graph Gχ such

that χ (−→e ) = 1 for any −→e ∈
←−→
E(F ) and Gχ ∼ Gξ.

The following lemma is immediate.

Lemma 2.3. [3, Lemma 2.20] Let Gξ be a U(H)-gain graph. Then Gξ is balanced if and
only if Gξ ∼ G1.

Lemma 2.4. [3, Lemma 2.19] Let W be a closed walk in U(H)-gain graph Gξ with initial
vertex x and ζ : V (G) → U(H) be a switching function. Then ξζ(W ) = ζ(x)−1ξ(W )ζ(x),
that is, ξζ(W ) and ξ(W ) are similar in H.

The Lemma 2.4 shows that the gain of a closed walk is an invariant of switching equiva-
lence up to similarity. The real part and the imaginary part of a quaternion h = h1 + h2i+
h3j+ h4k are h1 and h2i+ h3j+ h4k in turn. It was shown that two quaternions are similar
if and only if they have the same real part and modulus of the imaginary part respectively,
see [3, Lemma 2.2]. Hence, the real part of the gain of a closed walk is exactly an invariant
of switching equivalence.

A subgraph B of G is called basic if all components of B are either edges or cycles.
Let H be a TU-subgraph of G which is an union of disjoint t acyclic components Ti and c
unicyclic components Uj with unique cycle Cj. Then the weight of H under the gain function
ξ ∈ Σ(G,U(H)) is defined as

wξ(H) =
t∏

i=1

|V (Ti)|
c∏

j=1

(2− 2Re (ξ (Cj))) .

Hence wξ(H) > 0 if and only if all Cj are unbalanced under ξ.
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Lemma 2.5. [3, Theorem 4.6] (Coefficient Theorem with respect to adjacency polynomial of
quaternion unit gain graph). Let Gξ be a U(H)-gain graph with order n and size m. Suppose

the adjacency polynomial of Gξ is P (Gξ, x) = xn +
n∑

i=1

ai(ξ)x
n−i. Then

ai(ξ) =
∑

B∈Bi(G)

(−1)p(B)2c(B)
∏

C∈C (B)

Re(ξ(C)),

where Bi(G) = {Bi(G) : Bi(G) is a basic subgraph of G and |V (Bi(G))| = i}, i = 1, 2, · · · , n,
p(B) = #{the component of B}, and C (B) = {CB : CB is a cycle in B} with cardinal c(B).

Lemma 2.6. [3, Theorem 6.9] (Coefficient Theorem with respect to Laplacian polynomial of
quaternion unit gain graph). Let Gξ be a U(H)-gain graph with order n and size m. Suppose

the Laplacian polynomial of Gξ is Q(Gξ, x) =
n∑

k=0

(−1)kbk(ξ)xn−k. Then

bk(ξ) =
∑

H∈Hk

wξ(H).

Noting that the Moore determinant Mdet(A) = det(A) when A ∈ Cn×n, Lemma 2.5 is
the generalization of [11, Corollary 3.1] and Lemma 2.6 is the extension of [2, Theorem 3.9].

2.2 All finite subgroups of U(H)

Suppose that G is a finite multiplicative subgroup of H. For every q ∈ G , we have q|G | = 1
and then |q| = 1, i.e., q ∈ U(H). Hence, G is a finite subgroup of U(H) if and only if G is a
finite multiplicative subgroup of H. All kinds of binary polyhedral groups are listed in [15],
which are:

(i) binary dihedral group (order 4ℓ) defined as D4ℓ = ⟨a, b : a2ℓ = b4 = 1, bab−1 = a−1⟩,
(ii) binary tetrahedral group (order 24) defined as T = ⟨a, b : a6 = 1, b3 = a3, bab−1 =

a−1b⟩,
(iii) binary octahedral group (order 48) defined as O = ⟨a, b : a8 = 1, b3 = a4, bab−1 =

a−1b⟩,
(iv) and binary icosahedral group (order 120) defined as I = ⟨a, b : a10 = 1, b3 =

a5, bab−1 = a−1b⟩.
Indeed, Amitsur classified all finite multiplicative subgroups of H, consisting of cyclic

groups and binary polyhedral groups listed above [1].

Lemma 2.7. [1, Theorem 11] The finite multiplicative subgroups of H are the cyclic group
of any order, the binary dihedral group of order 4ℓ, the groups T , O and I .
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For simplicity, we consider the following groups:

Rℓ = {1, ωℓ, ω
2
ℓ , · · · , ωℓ−1

ℓ },
J4ℓ = {1, ω2ℓ, ω

2
2ℓ, · · · , ω2ℓ−1

2ℓ , j, ω2ℓj, ω
2
2ℓj, · · · , ω2ℓ−1

2ℓ j},
Q24 =

{
±1,±i,±j,±k, ±1±i±j±k

2

}
,

Q48 =
{
±1,±i,±j,±k, ±1±i±j±k

2
, ±1±i√

2
, ±1±j√

2
, ±1±k√

2
, ±i±j√

2
, ±j±k√

2
, ±k±i√

2

}
,

Q120 =


±1,±i,±j,±k, ±1±i±j±k

2
, ±i±e′j±ek

2
, ±ei±j±e′k

2
, ±e′i±ej±k

2
,

±1±ej±e′k
2

, ±1±e′i±ek
2

, ±1±ei±e′j
2

, ±e±e′j±k
2

, ±e±i±e′k
2

, ±e±e′i±j
2

,
±e′±ej±k

2
, ±e′±ei±k

2
, ±e′±i±ej

2

 ,

for ωs = e
2π
s
i, e = 1+

√
5

2
and e′ = 1−

√
5

2
. In particular, J8 = {±1,±i,±j,±k} is known as the

quaternion group. It can be checked that all of homomorphisms

σ1 : Cℓ = ⟨a : aℓ = 1⟩ → Rℓ, a 7→ ωℓ,
σ2 : D4ℓ → J4ℓ, a 7→ ω2ℓ, b 7→ j,

σ3 : T → Q24, a 7→ 1+i+j+k
2

, b 7→ 1+i+j−k
2

,

σ4 : O → Q48, a 7→ 1+i√
2
, b 7→ 1+i+j+k

2
,

σ5 : I → Q120, a 7→ e+e′j+k
2

, b 7→ 1−i−j+k
2

are isomorphisms. Therefore, every finite subgroup of U(H) is one of Rℓ, J4ℓ, Q24, Q48 and
Q120 up to isomorphism.

Let G ,H be two finite subgroups of U(H) and then G and H are said to be conjugate
in U(H) if there exists q ∈ U(H) such that G = q−1H q. It is evident that conjugacy of
finite subgroups of U(H) is an equivalence relation. Moreover, we have the following result:

Lemma 2.8. [14, Theorem 3.1] Two finite subgroups of U(H) are isomorphic if and only if
they are conjugate in U(H).

Thus, it is not hard to calculate the sum of all elements of a non-trivial finite group of
quaternion unit, shown in Proposition 2.9, which is an amazing conclusion and shows that
all finite groups of quaternion unit have a perfect algebraic structure.

Proposition 2.9. The sum of all elements of a non-trivial finite subgroup of U(H) is zero.

Proof. Firstly, we claim that
∑
h∈Q

h = 0 if the non-trivial group Q is one of Rℓ, J4ℓ, Q24, Q48,

Q120. Indeed, it is immediate whenever Q is one of Q24, Q48 and Q120, since q ∈ Q if and
only if −q ∈ Q. If Q = Rℓ, then ℓ ≥ 2 and

∑
h∈Q

h =
ℓ−1∑
s=0

ωs
ℓ =

ωℓ
ℓ − 1

ωℓ − 1
= 0.

If Q = J4ℓ, then ∑
h∈Q

h =
2ℓ−1∑
s=0

ωs
2ℓ +

2ℓ−1∑
s=0

jωs
2ℓ =

2ℓ−1∑
s=0

ωs
2ℓ + j

2ℓ−1∑
s=0

ωs
2ℓ = 0.
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Secondly, let G be any non-trivial finite subgroup of U(H). By Lemma 2.8, we write
G = q−1Qq for an quaternion unit q and a non-trivial finite group Q which we have discussed
above. Hence, we obtain∑

g∈G

g =
∑

g∈q−1Qq

g =
∑
h∈Q

q−1hq = q−1

(∑
h∈Q

h

)
q = 0.

Proposition 2.9 and the following multinomial theorem are the keys to prove the main
theorem (Theorem 3.1) in this paper.

Lemma 2.10. [10, Theorem 2.1] (Multinomial Theorem). Let x1, x2, · · · , xn be real numbers
and k be any non-negative integer. Then(

n∑
i=1

xi

)k

=
∑

(k1,k2,··· ,kn)∈Sk
n

k!

k1!k2! · · · kn!

n∏
i=1

xki
i ,

where Sk
n = {(k1, k2, · · · , kn) : k1, k2, · · · , kn ∈ Z≥0, k1 + k2 + · · ·+ kn = k}.

3 The G -average of adjacency (resp., Laplacian) poly-

nomials of a graph

The main theorem of this section is Theorem 3.1, which describes the G -average of adjacency
(resp., Laplacian) polynomial of a graph G for any non-trivial finite subgroup G of U(H) is
equal to the case for G = {−1, 1}.

Theorem 3.1. Let G be a non-trivial finite subgroup of U(H) and G be a graph with n
vertices and m edges. Suppose that M(G, x) and W (G, x) are the matching polynomial and
the weighted TU-subgraph polynomial of G respectively. Then

P̄G (G, x) = M(G, x) (3.1)

and
Q̄G (G, x) = W (G, x), (3.2)

where P̄G (G, x) and Q̄G (G, x) are defined in Definition 1.1.

Proof. (i) We write P̄G (G, x) = xn +
n∑

i=1

āix
n−i. Using Lemma 2.5, we have

āi =
1

|G |m
∑

ξ∈Σ(G,G )

ai(ξ) =
1

|G |m
∑

ξ∈Σ(G,G )

∑
B∈Bi(G)

(−1)p(B)2c(B)
∏

C∈C (B)

Re(ξ(C))

=
∑

B∈Bi(G)

1

|G |m
(−1)p(B)2c(B)

∑
ξ∈Σ(G,G )

∏
C∈C (B)

Re(ξ(C))

=
∑

B∈Bi(G)

1

|G |m
(−1)p(B)2c(B)

∑
ξ∈Σ(G,G )

∏
g∈G

(Re(g))d(g,B,ξ),
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where d(g,B, ξ) = #{cycle in B with gain g under the gain function ξ}.
Let Xd1d2···dℓ denote the event of a fixed basic subgraph B of G possessing exact dk cyclic

components with gain gk for G = {g1, g2, · · · , gℓ}. Then the probability

P [Xd1d2···dℓ ] =

(
1

|G |

)c(B)(
c(B)
d1

)(
c(B)− d1

d2

)
· · ·
(
c(B)− d1 − d2 − · · · − dℓ−1

dℓ

)
=

1

|G |c(B)
· c(B)!

d1!d2! · · · dℓ!
,

with 0 ≤ d1, d2, · · · , dℓ ≤ c(B) and d1 + d2 + · · ·+ dℓ = c(B), since every U(H)-gain cycle is
switching equivalent to the gain graph on this cycle with at most one edge not having gain 1
by Lemma 2.2. By Proposition 2.9 and Lemma 2.10, for a fixed basic subgraph B, we have

1

G m
(−1)p(B)2c(B)

∑
ξ∈Σ(G,G )

∏
g∈G

(Re(g))d(g,B,ξ)

=
1

|G |m
(−1)p(B)2c(B)

∑
(d1,d2,··· ,dℓ)∈S

c(B)
ℓ

|G |m · P [Xd1d2···dℓ ]
ℓ∏

k=1

(Re(gk))
dk

=
1

|G |m
(−1)p(B)2c(B)

∑
(d1,d2,··· ,dℓ)∈S

c(B)
ℓ

|G |m

|G |c(B)
· c(B)!

d1!d2! · · · dl!

ℓ∏
k=1

(Re(gk))
dk

=(−1)p(B)

(
2

|G |

)c(B)
(

ℓ∑
k=1

Re(gk)

)c(B)

= (−1)p(B)

(
2

|G |

)c(B)
(
Re

(
ℓ∑

k=1

gk

))c(B)

=(−1)p(B)

(
2

|G |

)c(B)
(
Re

(∑
g∈G

g

))c(B)

= (−1)p(B)

(
2

|G |

)c(B)

· 0c(B)

=

{
0, if c(B) > 0

(−1)p(B), if c(B) = 0
=

0, if B has at least one cyclic component

(−1)
1
2
|V (B)|, if B ∼=

1

2
|V (B)|K2

.

(3.3)

The last equality holds because B is basic subgraph of G. If i is odd, B has at least one cyclic
component for all B ∈ Bi(G), which implies that āi = 0. If i is even, for all B ∈ Bi(G), the
left hand of the Eq. (3.3) is non-zero if and only if B ∼= i

2
K2 , which implies that

āi =
∑

B∈Bi(G),B∼= i
2
K2

(−1)
i
2 = (−1)

i
2Φ i

2
(G) = (−1)kΦk(G)

with i = 2k. By the definition of the matching polynomial, the Eq. (3.1) holds.
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(ii) We write Q̄G (G, x) =
n∑

k=0

(−1)kb̄kxn−k. By Lemma 2.6, we have

b̄k =
1

|G |m
∑

ξ∈Σ(G,G )

bk(ξ) =
1

|G |m
∑

ξ∈Σ(G,G )

∑
H∈Hk

wξ(H)

=
∑

H∈Hk

1

|G |m
∑

ξ∈Σ(G,G )

wξ(H)

=
∑

H∈Hk

1

|G |m
∑

ξ∈Σ(G,G )

t∏
i=1

|V (Ti)|
c∏

j=1

(2− 2Re (ξ (Cj)))

=
∑

H∈Hk

1

|G |m
∑

ξ∈Σ(G,G )

t∏
i=1

|V (Ti)|
∏
g∈G

(2− 2Re (g))d(g,H,ξ) .

Let Yd1d2···dℓ be the event of a fixed TU-subgraphH ofG with exactly dk unicyclic components
with gain gk for G = {g1, g2, · · · , gℓ} in Gξ. Then the probability

P [Yd1d2···dℓ ] =

(
1

|G |

)c(
c
d1

)(
c− d1
d2

)
· · ·
(
c− d1 − d2 − · · · − dℓ−1

dℓ

)
=

1

|G |c
· c!

d1!d2! · · · dℓ!
,

with 0 ≤ d1, d2, · · · , dℓ ≤ c and d1 + d2 + · · ·+ dℓ = c. By Proposition 2.9 and Lemma 2.10,
for a fixed TU-subgraph U , we have

1

|G |m
∑

ξ∈U (H,G,G )

t∏
i=1

|V (Ti)|
∏
g∈G

(2− 2Re (g))d(g,H,ξ)

=
1

|G |m
t∏

i=1

|V (Ti)|
∑

(d1,d2,··· ,dℓ)∈Sc
l

|G |m · P [Yd1d2···dℓ ]
ℓ∏

k=1

(2− 2Re (gk))
dk

=
1

|G |m
t∏

i=1

|V (Ti)|
∑

(d1,d2,··· ,dℓ)∈Sc
l

|G |m

|G |c
· c!

d1!d2! · · · dℓ!

ℓ∏
k=1

(2− 2Re (gk))
dk

=
1

|G |c
t∏

i=1

|V (Ti)|

(
ℓ∑

k=1

(2− 2Re (gk))

)c

=
2c

|G |c
·

t∏
i=1

|V (Ti)|

(
ℓ−

ℓ∑
k=1

Re (gk)

)c

=
1

|G |c
· w(H)

(
|G | −

∑
g∈G

Re (g)

)c

=
1

|G |c
· w(H)

(
|G | − Re

(∑
g∈G

g

))c

=
1

|G |c
· w(H) · |G |c = w(H).

Therefore we obtain b̄k =
∑

H∈Hk

w(H), which implies the Eq. (3.2) holds.

Example 3.2. Let K3 be a triangle with vertex set V (K3) = {v1, v2, v3} and J8 be the
quaternion group. All TU-subgraphs of K3 are following: three TU-subgraphs isomorphic
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to an edge K2, three TU-subgraphs isomorphic to a path P3 and the unique TU-subgraph
isomorphic to K3. Moreover, K3 has three matchings containing an edge and no other
matching. Therefore, we have

M(K3, x) = x3 − 3x and W (K3, x) = x3 − 6x2 + 9x− 2.

On the other hand, we consider ξ1, ξ2, · · · , ξ8 ∈ Σ(K3, J8), which satisfy

ξ1((v1, v2)) = ξ1((v2, v3)) = ξ1((v3, v1)) = 1;
ξ2((v1, v2)) = ξ2((v2, v3)) = 1, ξ2((v3, v1)) = −1;
ξ3((v1, v2)) = ξ3((v2, v3)) = 1, ξ3((v3, v1)) = i;
ξ4((v1, v2)) = ξ4((v2, v3)) = 1, ξ4((v3, v1)) = -i;
ξ5((v1, v2)) = ξ5((v2, v3)) = 1, ξ5((v3, v1)) = j;
ξ6((v1, v2)) = ξ6((v2, v3)) = 1, ξ6((v3, v1)) = -j;
ξ7((v1, v2)) = ξ7((v2, v3)) = 1, ξ7((v3, v1)) = k;
ξ8((v1, v2)) = ξ8((v2, v3)) = 1, ξ8((v3, v1)) = -k;

For all ξ ∈ Σ(K3, J8), there exists a graph (K3)ξj possessing the same adjacency (resp.,
Laplacian) polynomial as those of (K3)ξ, j = 1, 2, · · · , 8 by Lemma 2.1 and Lemma 2.2.
According to Lemma 2.5 and 2.6, it is not hard to show that

P ((K3)ξ1 , x) = x3 − 3x− 2, P ((K3)ξ2 , x) = x3 − 3x+ 2,
P ((K3)ξj , x) = x3 − 3x, j = 3, 4, · · · , 8;

Q((K3)ξ1 , x) = x3 − 6x2 + 9x,Q((K3)ξ2 , x) = x3 − 6x2 + 9x− 4,
Q((K3)ξj , x) = x3 − 6x2 + 9x− 2, j = 3, 4, · · · , 8.

Consider Φi = {τ ∈ Σ(K3, J8) : (K3)τ ∼ (K3)ξi} and

σij : Φi → Φj, τ1 7→ τ2
(τ2((v1, v2)) = τ1((v1, v2)), τ2((v2, v3)) = τ1((v2, v3)), τ2((v3, v1)) = τ1((v3, v1))x

−1y),

for τ1((v1, v2))τ1((v2, v3))τ1((v3, v1)) = x, τ2((v1, v2))τ2((v2, v3))τ2((v3, v1)) = y and i, j =
1, 2, · · · , 8. It is clear that every σij is a bijection. Hence, there are exactly 82 distinct
J8-gain graphs (K3)ξ share the same adjacency (resp., Laplacian) polynomial with (K3)ξj for
all j = 1, 2, · · · , 8. Therefore, we obtain

P̄J8(K3, x) =
82

83

8∑
j=1

P ((K3)ξj , x) = x3 − 3x = M(K3, x),

Q̄J8(K3, x) =
82

83

8∑
j=1

Q((K3)ξj , x) = x3 − 6x2 + 9x− 2 = W (K3, x).

The following result describes the property of forests, which is the only kind of graphs
such that its adjacency (resp., Laplacian) polynomial is exactly equal to its G -average of
adjacency (resp., Laplacian) polynomials. It also shows that the condition “G is non-trivial”
in Theorem 3.1 cannot be removed.
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Corollary 3.3. Let G be a finite subgroup of U(H) and G be a graph. Suppose that P (Gξ, x)
(resp., Q(Gξ, x)) is the adjacency (resp., Laplacian) polynomial of a G -gain graph Gξ.
M(G, x),W (G, x) are the matching polynomial and the weighted TU-subgraph polynomial
of G respectively. The following five statements are equivalent:

(i) G is a forest;
(ii) P (Gξ, x) = M(G, x), for all ξ ∈ Σ(G,G );
(iii) P (Gξ, x) = M(G, x), for some ξ ∈ Σ(G,G ) such that Gξ is balanced;
(iv) Q(Gξ, x) = W (G, x);
(v) Q(Gξ, x) = W (G, x), for some ξ ∈ Σ(G,G ) such that Gξ is balanced.

Proof. (i)⇒(ii) and (i)⇒(iv): It is immediate if G = {1} and now we suppose G is non-
trivial. Gξ is balanced for all ξ ∈ Σ(G,G ) since the forest G is acyclic. According to Lemma
2.1 and Lemma 2.3, P (Gξ, x) = P (G1, x) and Q(Gξ, x) = Q(G1, x) for all ξ ∈ Σ(G,G ).
Furthermore, by Theorem 3.1 and Definition 1.1, we have

M(G, x) = P̄G (G, x) = P (Gξ, x) and W (G, x) = Q̄G (G, x) = Q(Gξ, x).

(ii)⇒(iii) and (iv)⇒(v): Both are obvious.
(iii)⇒(i): For ξ ∈ Σ(G,G ) such that Gξ is balanced, G1 ∼ Gξ, which implies that

P (G, x) = P (G1, x) = P (Gξ, x) = M(G, x). Since the matching polynomial of a graph
coincides with its adjacency polynomial if and only if the graph is a forest [6, Corollary 2.1],
we obtain G is a forest.

(v)⇒(i): As the same way to the proof of (iii)⇒(i), we have Q(G, x) = W (G, x) =
n∑

k=0

(−1)k
∑

H∈Hk

w(H)xn−k. By Theorem 7.2.8 of [4], then

Q(G, x) =
n∑

k=0

(−1)k
∑

|E(F )|=k

P(F )xn−k,

where the sum is taken over all spanning forests F , and P(F ) is the product of the numbers
of vertices in the components of F . Therefore,∑

H∈Hk

w(H) =
∑

|E(F )|=k

P(F )

for all k = 0, 1, 2, · · · , n. Assume that G has at least one cycle Ct. Then Ct ∪ (n − t)K1 is
a TU-subgraph of G with t edges. Noting that all spanning forests F with t edges are also
TU-subgraphs of G, we have∑

H∈Ht

w(H) ≥ 2 +
∑

|E(F )|=t

P(F ) >
∑

|E(F )|=t

P(F ),

a contradiction. Hence, G is a forest.

Naturally, we wonder whether there exists a gain function ξ ∈ Σ(G,U(H)) such that
P (Gξ, x) = M(G, x) and Q(Gξ, x) = W (G, x) for G containing some cycles. In Example
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3.2, gain functions ξj, j = 3, · · · , 8 satisfy this condition. If there exists a gain function
ξ ∈ Σ(G,U(H)) such that Re(ξ(C)) = 0 for all cycles C in G, then P (Gξ, x) = M(G, x) and
Q(Gξ, x) = W (G, x) by Lemma 2.5 and Lemma 2.6. The following proposition shows that
there is no such a gain function on the completed graph K4.

Proposition 3.4. There is no gain function φ ∈ Σ(K4, U(H)) such that Re(φ(C)) = 0 for
all cycles C in K4.

Proof. Assume that there exists a gain function φ ∈ Σ(K4, U(H)) such that Re(φ(C)) = 0
for all cycles C in K4 with vertex set V (K4) = {v1, v2, v3, v4}. Define two switching function
ξ, ν : V (K4)→ U(H) as follows:

ξ(vi) =


1, i = 1, 4,

(φ((v1, v2)))
−1, i = 2,

(φ((v1, v2))φ((v2, v3)))
−1, i = 3.

, ν(vi) =


1, i = 1,

(φξ((v1, v2)))
−1, i = 2,

(φξ((v1, v2))φ
ξ((v2, v3)))

−1, i = 3,

(φξ((v1, v2))φ
ξ((v2, v4)))

−1, i = 4.

.

It can be checked that φξν((v1, v2)) = φξν((v2, v3)) = φξν((v2, v4)) = 1. Recall the result of
Lemma 2.4 implies the real part of the gain of a cycle is an invariant of switching equivalence.
Without loss of generality, suppose that φ((v1, v2)) = φ((v2, v3)) = φ((v2, v4)) = 1.

We write φ((v3, v4)) = b1i + c1j + d1k, φ((v1, v3)) = b2i + c2j + d2k and φ((v4, v1)) =
b3i + c3j + d3k since the real part of the gains of cycle v2v3v4v2, v1v2v3v1 and v1v2v4v1 are
all zero, where b2i + c2i + d2i ̸= 0, i = 1, 2, 3. Now consider that the real part of any cycle
containing edge v3v4 is zero, i.e.,

Re(φ(v1v3v4v1)) = Re(φ(v1v2v4v3v1)) = Re(φ(v1v4v3v2v1)) = Re(φ(v1v4v2v3v1)) = 0.

Hence

(c2d3 − d2c3)b1 + (d2b3−b2d3)c1 + (b2c3 − c2b3)d1 = 0, (3.4a)

b1b2 + c1c2 + d1d2 = 0, (3.4b)

b1b3 + c1c3 + d1d3 = 0, (3.4c)

b2b3 + c2c3 + d2d3 = 0. (3.4d)

According to Eq. (3.4a), we obtain

det

b1 c1 d1
b2 c2 d2
b3 c3 d3

 = 0

and then the three vectors (b1, c1, d1), (b2, c2, d2), (b3, c3, d3) in R3 are coplanar. By Eq. (3.4b)
and (3.4c), (b1, c1, d1) is orthogonal to both (b2, c2, d2) and (b3, c3, d3). Hence, (b2, c2, d2) is
parallel to (b3, c3, d3) and we can write (b2, c2, d2) = t(b3, c3, d3) for some t ∈ R. Together
with the Eq. (3.4d), t(b23 + c23 + d23) = 0, which implies b22 + c22 + d22 = t2(b23 + c23 + d23) = 0, a
contradiction.
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