

The \mathcal{G} -average of adjacency and Laplacian polynomials of a graph

Yaoping Hou* and Wenjun Xie

(Communicated by Sudipta Mallik)

Abstract

Let \mathcal{G} be a finite multiplicative group of quaternion unit $U(\mathbb{H})$. The \mathcal{G} -average of adjacency (resp., Laplacian) polynomial of a graph G is defined as the arithmetic mean of the characteristic polynomials of adjacency (resp., Laplacian) matrices of all \mathcal{G} -gain graphs on G . In this paper, we prove that the \mathcal{G} -average adjacency (resp., Laplacian) polynomial of a graph for any non-trivial finite subgroup \mathcal{G} of $U(\mathbb{H})$ coincides with its matching (resp., weighted TU-subgraph) polynomial, which generalizes previous findings for signed graphs.

1 Introduction

Throughout this paper, all graphs are undirected and simple unless otherwise specified. Let G be a graph with vertex set $V(G) = \{v_1, v_2, \dots, v_n\}$ and edge set $E(G) \subseteq \binom{V(G)}{2}$. Various graph polynomials have been extensively studied, such as the matching polynomial and weighted TU-subgraph polynomial. The matching polynomial of a graph G , first introduced in [7], is defined as

$$M(G, x) = \sum_{t=0}^{\lfloor \frac{n}{2} \rfloor} (-1)^t \Phi_t(G) x^{n-2t},$$

where

$$\Phi_t(G) = \left| \left\{ \mathcal{M}_t(G) : \mathcal{M}_t(G) \text{ is a matching of } G \text{ with } t \text{ edges, } 0 \leq t \leq \left\lfloor \frac{n}{2} \right\rfloor \right\} \right|.$$

* Corresponding author

MSC2020: 05C50, 05C22, 05C35; Keywords: \mathcal{G} -average of adjacency polynomial, \mathcal{G} -average of Laplacian polynomial, Quaternion unit gain graph, Matching polynomial, Weighted TU-subgraph polynomial

Received Apr 7, 2025; Revised Sep 10, 2025; Accepted Dec 22, 2025; Published Dec 31, 2025

© The author(s). Released under the CC BY 4.0 International License

Furthermore, a spanning subgraph H of G is called a TU-subgraph, as defined in [17], if every component of H is either acyclic or unicyclic. Note that the concept of a TU-subgraph in this paper differs from that in [2], whose components are restricted to trees or odd unicyclic graphs. The weight of the TU-subgraph H of G is $w(H) = 2^c \prod_{i=1}^t |V(T_i)|$ if H is an union of disjoint t tree components T_i and c unicyclic components U_j of G . In particular, $w(H) = 2^c$ if H contains no tree components. Accordingly, the weighted TU-subgraph polynomial of G is defined as

$$W(G, x) = \sum_{k=0}^n (-1)^k \sum_{H \in \mathcal{H}_k} w(H) x^{n-k},$$

where

$$\mathcal{H}_k = \{H : H \text{ is a TU-subgraph of } G \text{ and } |E(H)| = k\}.$$

Godsil and Gutman [6] (resp., Zhang and Chen [17]) have shown that the matching polynomial (resp., the weighted TU-subgraph polynomial) of a graph G is exactly the average of adjacency (resp. Laplacian) polynomials of all signed graphs on G . Noting that every signed graph is a special gain graph, now we introduce the definition of gain graphs. Let

$$\mathbb{H} = \{h_1 + h_2\mathbf{i} + h_3\mathbf{j} + h_4\mathbf{k} : h_1, h_2, h_3, h_4 \in \mathbb{R}, \mathbf{i}^2 = \mathbf{j}^2 = \mathbf{k}^2 = \mathbf{ijk} = -1\}$$

denote the quaternion algebra equipped with a norm $|\cdot|$ such that $|h| = \sqrt{h_1^2 + h_2^2 + h_3^2 + h_4^2}$ for every quaternion $h = h_1 + h_2\mathbf{i} + h_3\mathbf{j} + h_4\mathbf{k}$. It can be verified that $U(\mathbb{H}) = \{h \in \mathbb{H} : |h| = 1\}$ forms a multiplicative group, i.e., the quaternion unit group. Let Γ be a multiplicative group of quaternion unit. A graph $G = (V(G), E(G))$ may be viewed as a directed graph $(V(G), \overleftrightarrow{E(G)})$ by thinking of every edge as a pair of oppositely directed arcs. A directed weighted graph $G_\xi = (G, \xi)$ is called Γ -gain graph on a graph G in [3] if the weight function $\xi : \overleftrightarrow{E(G)} \rightarrow \Gamma$ satisfies $\xi((v_j, v_i))\xi((v_i, v_j)) = 1$ for all $(v_i, v_j) \in \overleftrightarrow{E(G)}$. The function ξ is also referred to as a gain function while Γ is called the gain group of G_ξ . The images of the gain function ξ is denoted by $\text{Im}\xi$. In particular, an ordinary graph G could be viewed as the Γ -gain graph G_1 , where $\text{Im}1 = \{1\}$. A Γ -gain graph G_ξ is signed graph (resp., complex unit \mathbb{T} -gain graph, quaternion unit $U(\mathbb{H})$ -gain graph) if and only if $\text{Im}\xi \subseteq \{-1, 1\}$ (resp., $\text{Im}\xi \subseteq \mathbb{T} = \{z \in \mathbb{C} : |z| = 1\}$, $\text{Im}\xi \subseteq U(\mathbb{H})$). Therefore all of ordinary graphs, signed graphs and \mathbb{T} -gain graphs are special $U(\mathbb{H})$ -gain graphs.

There are many classical results on theory of graph spectra and applications [4]. There are various generalization on spectra of gain graphs, such as spectra of signed graphs [8, 9], \mathbb{T} -gain graph [11, 13]. Recently, Belardo, Brunetti, Coble, Reff and Skogman extended spectral theory of \mathbb{T} -gain graph to $U(\mathbb{H})$ -gain graph [3].

The adjacency (resp., Laplacian) polynomial is the characteristic polynomial of an adjacency (resp., Laplacian) matrix of a $U(\mathbb{H})$ -gain graph, and the coefficient theorems with respect to them have been established in [3].

Definition 1.1. Let \mathcal{G} be a finite subgroup of $U(\mathbb{H})$, G be a graph with m edges and $\Sigma(G, \mathcal{G})$ be the set consisting of all gain functions on $\overleftrightarrow{E(G)}$. Suppose that $P(G_\xi, x)$ (resp., $Q(G_\xi, x)$)

is the adjacency (resp., Laplacian) polynomial of a \mathcal{G} -gain graph G_ξ for some $\xi \in \Sigma(G, \mathcal{G})$. Then

$$\bar{P}_{\mathcal{G}}(G, x) = \frac{1}{|\mathcal{G}|^m} \sum_{\xi \in \Sigma(G, \mathcal{G})} P(G_\xi, x) \text{ and } \bar{Q}_{\mathcal{G}}(G, x) = \frac{1}{|\mathcal{G}|^m} \sum_{\xi \in \Sigma(G, \mathcal{G})} Q(G_\xi, x)$$

are called the \mathcal{G} -average of adjacency polynomials of G and \mathcal{G} -average of Laplacian polynomials of G respectively.

Recall the relationship between the matching polynomial (resp., the weighted TU-subgraph polynomial) of G and the adjacency (resp., Laplacian) polynomials of all signed graphs on G . With the notion in Definition 1.1, Godsil and Gutman proved that

$$\bar{P}_{\{-1,1\}}(G, x) = M(G, x) \quad (1.1)$$

in [6, Corollary 2.2] and Zhang and Chen proved that

$$\bar{Q}_{\{-1,1\}}(G, x) = W(G, x) \quad (1.2)$$

in [17, Theorem 2.2].

The aim of this paper is to generalize Eqs. (1.1) and (1.2) for gain graphs. Observing the gain group of signed graphs is $\{-1, 1\}$, it is natural to ask whether the Eq. (1.1) and (1.2) hold whenever $\{-1, 1\}$ is replaced by any non-trivial finite subgroup \mathcal{G} of $U(\mathbb{H})$. In Section 2, we recall basic results on coefficient theorems with respect to the adjacency and Laplacian polynomials of the $U(\mathbb{H})$ -gain graph and the classification of all finite subgroups of $U(\mathbb{H})$. In Section 3, we will prove that Eq. (1.1) and (1.2) hold in the case of any non-trivial finite subgroup of quaternion units, i.e., the matching (resp., weighted TU-subgraph) polynomial of a graph is equal to the \mathcal{G} -average adjacency (resp., Laplacian) polynomial of this graph for any non-trivial finite subgroup \mathcal{G} of $U(\mathbb{H})$.

2 Preliminaries

2.1 The basic results for $U(\mathbb{H})$ -gain graphs

Let G be a graph and gain function $\xi \in \Sigma(G, U(\mathbb{H}))$. The adjacency matrix $M_A(G_\xi) = (a_{ij}) \in (U(\mathbb{H}) \cup \{0\})^{n \times n}$ of G_ξ is defined by

$$a_{ij} = \begin{cases} \xi((v_i, v_j)), & \text{if } (v_i, v_j) \in \overleftrightarrow{E}(G), \\ 0, & \text{otherwise} \end{cases},$$

and the Laplacian matrix $M_L(G_\xi)$ of G_ξ is defined to be $M_L(G_\xi) = M_D(G) - M_A(G_\xi)$, where $M_D(G) = \text{diag}(d(v_i) : v_i \in V(G))$ is the degree matrix of G and $d(v_i)$ is the degree of vertex v_i . It is clear that $M_A(G_\xi)$ and $M_L(G_\xi)$ are both Hermitian for all $U(\mathbb{H})$ -gain graph G_ξ .

The Moore determinant of a Hermitian quaternion matrix is defined in [5, 12], written as $\text{Mdet}(H)$ for the Hermitian quaternion matrix H . Moreover,

$$P(G_\xi, x) = \text{Mdet}(xI_n - M_A(G_\xi)) \text{ and } Q(G_\xi, x) = \text{Mdet}(xI_n - M_L(G_\xi))$$

are defined as the adjacency polynomial of G_ξ and the Laplacian polynomial of G_ξ respectively in [3].

Let $\xi(W) = \xi((v_1, v_2))\xi((v_2, v_3)) \cdots \xi((v_{s-1}, v_s))$ be the gain of a walk $W = v_1v_2v_3 \cdots v_s$ in G_ξ . A $U(\mathbb{H})$ -gain graph G_ξ is balanced if $\xi(C) = 1$ for every cycle C in G_ξ . Two $U(\mathbb{H})$ -gain graphs G_{ξ_1} and G_{ξ_2} are said to be switching equivalent, written as $G_{\xi_1} \sim G_{\xi_2}$, if there exists an invertible diagonal matrix $D \in (U(\mathbb{H}) \cup \{0\})^{n \times n}$ such that $D^* M_A(G_{\xi_1}) D = M_A(G_{\xi_2})$, where D^* is the conjugate transpose of D . It is obvious that this diagonal matrix D is unitary, and then two switching equivalent $U(\mathbb{H})$ -gain graphs have the same adjacency (resp., Laplacian) polynomial. The function $\zeta(v_i) = D_{ii}$, $i = 1, 2, \dots, |V(G)|$ is called switching function and the gain function ξ_2 could be written as ξ_1^ζ .

Lemma 2.1. [3, Lemma 4.1 and 6.1] *Two switching equivalent $U(\mathbb{H})$ -gain graphs have the same adjacency (resp., Laplacian) polynomial and adjacency (resp., Laplacian) spectrum.*

The next result answers what are the most simple $U(\mathbb{H})$ -gain graphs up to switching equivalence.

Lemma 2.2. [16, The proof of Lemma 5.3] *Let G be a graph and F be a spanning forest of G . Then for any gain function $\xi \in \Sigma(G, U(\mathbb{H}))$, there exists a $U(\mathbb{H})$ -gain graph G_χ such that $\chi(\vec{e}) = 1$ for any $\vec{e} \in \overleftrightarrow{E(F)}$ and $G_\chi \sim G_\xi$.*

The following lemma is immediate.

Lemma 2.3. [3, Lemma 2.20] *Let G_ξ be a $U(\mathbb{H})$ -gain graph. Then G_ξ is balanced if and only if $G_\xi \sim G_1$.*

Lemma 2.4. [3, Lemma 2.19] *Let W be a closed walk in $U(\mathbb{H})$ -gain graph G_ξ with initial vertex x and $\zeta : V(G) \rightarrow U(\mathbb{H})$ be a switching function. Then $\xi^\zeta(W) = \zeta(x)^{-1} \xi(W) \zeta(x)$, that is, $\xi^\zeta(W)$ and $\xi(W)$ are similar in \mathbb{H} .*

The Lemma 2.4 shows that the gain of a closed walk is an invariant of switching equivalence up to similarity. The real part and the imaginary part of a quaternion $h = h_1 + h_2\mathbf{i} + h_3\mathbf{j} + h_4\mathbf{k}$ are h_1 and $h_2\mathbf{i} + h_3\mathbf{j} + h_4\mathbf{k}$ in turn. It was shown that two quaternions are similar if and only if they have the same real part and modulus of the imaginary part respectively, see [3, Lemma 2.2]. Hence, the real part of the gain of a closed walk is exactly an invariant of switching equivalence.

A subgraph B of G is called basic if all components of B are either edges or cycles. Let H be a TU-subgraph of G which is an union of disjoint t acyclic components T_i and c unicyclic components U_j with unique cycle C_j . Then the weight of H under the gain function $\xi \in \Sigma(G, U(\mathbb{H}))$ is defined as

$$w_\xi(H) = \prod_{i=1}^t |V(T_i)| \prod_{j=1}^c (2 - 2\operatorname{Re}(\xi(C_j))).$$

Hence $w_\xi(H) > 0$ if and only if all C_j are unbalanced under ξ .

Lemma 2.5. [3, Theorem 4.6] (Coefficient Theorem with respect to adjacency polynomial of quaternion unit gain graph). Let G_ξ be a $U(\mathbb{H})$ -gain graph with order n and size m . Suppose the adjacency polynomial of G_ξ is $P(G_\xi, x) = x^n + \sum_{i=1}^n a_i(\xi) x^{n-i}$. Then

$$a_i(\xi) = \sum_{B \in \mathcal{B}_i(G)} (-1)^{p(B)} 2^{c(B)} \prod_{C \in \mathcal{C}(B)} \text{Re}(\xi(C)),$$

where $\mathcal{B}_i(G) = \{B_i(G) : B_i(G) \text{ is a basic subgraph of } G \text{ and } |V(B_i(G))| = i\}$, $i = 1, 2, \dots, n$, $p(B) = \#\{\text{the component of } B\}$, and $\mathcal{C}(B) = \{C_B : C_B \text{ is a cycle in } B\}$ with cardinal $c(B)$.

Lemma 2.6. [3, Theorem 6.9] (Coefficient Theorem with respect to Laplacian polynomial of quaternion unit gain graph). Let G_ξ be a $U(\mathbb{H})$ -gain graph with order n and size m . Suppose the Laplacian polynomial of G_ξ is $Q(G_\xi, x) = \sum_{k=0}^n (-1)^k b_k(\xi) x^{n-k}$. Then

$$b_k(\xi) = \sum_{H \in \mathcal{H}_k} w_\xi(H).$$

Noting that the Moore determinant $\text{Mdet}(A) = \det(A)$ when $A \in \mathbb{C}^{n \times n}$, Lemma 2.5 is the generalization of [11, Corollary 3.1] and Lemma 2.6 is the extension of [2, Theorem 3.9].

2.2 All finite subgroups of $U(\mathbb{H})$

Suppose that \mathcal{G} is a finite multiplicative subgroup of \mathbb{H} . For every $q \in \mathcal{G}$, we have $q^{|\mathcal{G}|} = 1$ and then $|q| = 1$, i.e., $q \in U(\mathbb{H})$. Hence, \mathcal{G} is a finite subgroup of $U(\mathbb{H})$ if and only if \mathcal{G} is a finite multiplicative subgroup of \mathbb{H} . All kinds of binary polyhedral groups are listed in [15], which are:

- (i) binary dihedral group (order 4ℓ) defined as $\mathcal{D}_{4\ell} = \langle a, b : a^{2\ell} = b^4 = 1, bab^{-1} = a^{-1} \rangle$,
- (ii) binary tetrahedral group (order 24) defined as $\mathcal{T} = \langle a, b : a^6 = 1, b^3 = a^3, bab^{-1} = a^{-1}b \rangle$,
- (iii) binary octahedral group (order 48) defined as $\mathcal{O} = \langle a, b : a^8 = 1, b^3 = a^4, bab^{-1} = a^{-1}b \rangle$,
- (iv) and binary icosahedral group (order 120) defined as $\mathcal{I} = \langle a, b : a^{10} = 1, b^3 = a^5, bab^{-1} = a^{-1}b \rangle$.

Indeed, Amitsur classified all finite multiplicative subgroups of \mathbb{H} , consisting of cyclic groups and binary polyhedral groups listed above [1].

Lemma 2.7. [1, Theorem 11] The finite multiplicative subgroups of \mathbb{H} are the cyclic group of any order, the binary dihedral group of order 4ℓ , the groups \mathcal{T} , \mathcal{O} and \mathcal{I} .

For simplicity, we consider the following groups:

$$\begin{aligned}
 R_\ell &= \{1, \omega_\ell, \omega_\ell^2, \dots, \omega_\ell^{\ell-1}\}, \\
 J_{4\ell} &= \{1, \omega_{2\ell}, \omega_{2\ell}^2, \dots, \omega_{2\ell}^{2\ell-1}, \mathbf{j}, \omega_{2\ell}\mathbf{j}, \omega_{2\ell}^2\mathbf{j}, \dots, \omega_{2\ell}^{2\ell-1}\mathbf{j}\}, \\
 Q_{24} &= \{\pm 1, \pm \mathbf{i}, \pm \mathbf{j}, \pm \mathbf{k}, \frac{\pm 1 \pm \mathbf{i} \pm \mathbf{j} \pm \mathbf{k}}{2}\}, \\
 Q_{48} &= \left\{ \pm 1, \pm \mathbf{i}, \pm \mathbf{j}, \pm \mathbf{k}, \frac{\pm 1 \pm \mathbf{i} \pm \mathbf{j} \pm \mathbf{k}}{2}, \frac{\pm 1 \pm \mathbf{i}}{\sqrt{2}}, \frac{\pm 1 \pm \mathbf{j}}{\sqrt{2}}, \frac{\pm 1 \pm \mathbf{k}}{\sqrt{2}}, \frac{\pm \mathbf{i} \pm \mathbf{j}}{\sqrt{2}}, \frac{\pm \mathbf{j} \pm \mathbf{k}}{\sqrt{2}}, \frac{\pm \mathbf{k} \pm \mathbf{i}}{\sqrt{2}} \right\}, \\
 Q_{120} &= \left\{ \frac{\pm 1 \pm \mathbf{i} \pm \mathbf{j} \pm \mathbf{k}}{2}, \frac{\pm 1 \pm \mathbf{i} \pm \mathbf{j} \pm \mathbf{k}}{2}, \frac{\pm \mathbf{i} \pm \mathbf{j} \pm \mathbf{k}}{2} \right\},
 \end{aligned}$$

for $\omega_s = e^{\frac{2\pi}{s}\mathbf{i}}$, $e = \frac{1+\sqrt{5}}{2}$ and $e' = \frac{1-\sqrt{5}}{2}$. In particular, $J_8 = \{\pm 1, \pm \mathbf{i}, \pm \mathbf{j}, \pm \mathbf{k}\}$ is known as the quaternion group. It can be checked that all of homomorphisms

$$\begin{aligned}
 \sigma_1 : \mathcal{C}_\ell &= \langle a : a^\ell = 1 \rangle \rightarrow R_\ell, a \mapsto \omega_\ell, \\
 \sigma_2 : \mathcal{D}_{4\ell} &\rightarrow J_{4\ell}, a \mapsto \omega_{2\ell}, b \mapsto \mathbf{j}, \\
 \sigma_3 : \mathcal{T} &\rightarrow Q_{24}, a \mapsto \frac{1+i+j+k}{2}, b \mapsto \frac{1+i+j-k}{2}, \\
 \sigma_4 : \mathcal{O} &\rightarrow Q_{48}, a \mapsto \frac{1+i}{\sqrt{2}}, b \mapsto \frac{1+i+j+k}{2}, \\
 \sigma_5 : \mathcal{I} &\rightarrow Q_{120}, a \mapsto \frac{e+e'j+k}{2}, b \mapsto \frac{1-i-j+k}{2}
 \end{aligned}$$

are isomorphisms. Therefore, every finite subgroup of $U(\mathbb{H})$ is one of R_ℓ , $J_{4\ell}$, Q_{24} , Q_{48} and Q_{120} up to isomorphism.

Let \mathcal{G}, \mathcal{H} be two finite subgroups of $U(\mathbb{H})$ and then \mathcal{G} and \mathcal{H} are said to be conjugate in $U(\mathbb{H})$ if there exists $q \in U(\mathbb{H})$ such that $\mathcal{G} = q^{-1}\mathcal{H}q$. It is evident that conjugacy of finite subgroups of $U(\mathbb{H})$ is an equivalence relation. Moreover, we have the following result:

Lemma 2.8. [14, Theorem 3.1] *Two finite subgroups of $U(\mathbb{H})$ are isomorphic if and only if they are conjugate in $U(\mathbb{H})$.*

Thus, it is not hard to calculate the sum of all elements of a non-trivial finite group of quaternion unit, shown in Proposition 2.9, which is an amazing conclusion and shows that all finite groups of quaternion unit have a perfect algebraic structure.

Proposition 2.9. The sum of all elements of a non-trivial finite subgroup of $U(\mathbb{H})$ is zero.

Proof. Firstly, we claim that $\sum_{h \in \mathcal{Q}} h = 0$ if the non-trivial group \mathcal{Q} is one of R_ℓ , $J_{4\ell}$, Q_{24} , Q_{48} , Q_{120} . Indeed, it is immediate whenever \mathcal{Q} is one of Q_{24} , Q_{48} and Q_{120} , since $q \in \mathcal{Q}$ if and only if $-q \in \mathcal{Q}$. If $\mathcal{Q} = R_\ell$, then $\ell \geq 2$ and

$$\sum_{h \in \mathcal{Q}} h = \sum_{s=0}^{\ell-1} \omega_\ell^s = \frac{\omega_\ell^\ell - 1}{\omega_\ell - 1} = 0.$$

If $\mathcal{Q} = J_{4\ell}$, then

$$\sum_{h \in \mathcal{Q}} h = \sum_{s=0}^{2\ell-1} \omega_{2\ell}^s + \sum_{s=0}^{2\ell-1} \mathbf{j} \omega_{2\ell}^s = \sum_{s=0}^{2\ell-1} \omega_{2\ell}^s + \mathbf{j} \sum_{s=0}^{2\ell-1} \omega_{2\ell}^s = 0.$$

Secondly, let \mathcal{G} be any non-trivial finite subgroup of $U(\mathbb{H})$. By Lemma 2.8, we write $\mathcal{G} = q^{-1}\mathcal{Q}q$ for an quaternion unit q and a non-trivial finite group \mathcal{Q} which we have discussed above. Hence, we obtain

$$\sum_{g \in \mathcal{G}} g = \sum_{g \in q^{-1}\mathcal{Q}q} g = \sum_{h \in \mathcal{Q}} q^{-1}hq = q^{-1} \left(\sum_{h \in \mathcal{Q}} h \right) q = 0. \quad \square$$

Proposition 2.9 and the following multinomial theorem are the keys to prove the main theorem (Theorem 3.1) in this paper.

Lemma 2.10. [10, Theorem 2.1] (Multinomial Theorem). *Let x_1, x_2, \dots, x_n be real numbers and k be any non-negative integer. Then*

$$\left(\sum_{i=1}^n x_i \right)^k = \sum_{(k_1, k_2, \dots, k_n) \in S_n^k} \frac{k!}{k_1! k_2! \cdots k_n!} \prod_{i=1}^n x_i^{k_i},$$

where $S_n^k = \{(k_1, k_2, \dots, k_n) : k_1, k_2, \dots, k_n \in \mathbb{Z}_{\geq 0}, k_1 + k_2 + \cdots + k_n = k\}$.

3 The \mathcal{G} -average of adjacency (resp., Laplacian) polynomials of a graph

The main theorem of this section is Theorem 3.1, which describes the \mathcal{G} -average of adjacency (resp., Laplacian) polynomial of a graph G for any non-trivial finite subgroup \mathcal{G} of $U(\mathbb{H})$ is equal to the case for $\mathcal{G} = \{-1, 1\}$.

Theorem 3.1. *Let \mathcal{G} be a non-trivial finite subgroup of $U(\mathbb{H})$ and G be a graph with n vertices and m edges. Suppose that $M(G, x)$ and $W(G, x)$ are the matching polynomial and the weighted TU-subgraph polynomial of G respectively. Then*

$$\bar{P}_{\mathcal{G}}(G, x) = M(G, x) \tag{3.1}$$

and

$$\bar{Q}_{\mathcal{G}}(G, x) = W(G, x), \tag{3.2}$$

where $\bar{P}_{\mathcal{G}}(G, x)$ and $\bar{Q}_{\mathcal{G}}(G, x)$ are defined in Definition 1.1.

Proof. (i) We write $\bar{P}_{\mathcal{G}}(G, x) = x^n + \sum_{i=1}^n \bar{a}_i x^{n-i}$. Using Lemma 2.5, we have

$$\begin{aligned} \bar{a}_i &= \frac{1}{|\mathcal{G}|^m} \sum_{\xi \in \Sigma(G, \mathcal{G})} a_i(\xi) = \frac{1}{|\mathcal{G}|^m} \sum_{\xi \in \Sigma(G, \mathcal{G})} \sum_{B \in \mathcal{B}_i(G)} (-1)^{p(B)} 2^{c(B)} \prod_{C \in \mathcal{C}(B)} \text{Re}(\xi(C)) \\ &= \sum_{B \in \mathcal{B}_i(G)} \frac{1}{|\mathcal{G}|^m} (-1)^{p(B)} 2^{c(B)} \sum_{\xi \in \Sigma(G, \mathcal{G})} \prod_{C \in \mathcal{C}(B)} \text{Re}(\xi(C)) \\ &= \sum_{B \in \mathcal{B}_i(G)} \frac{1}{|\mathcal{G}|^m} (-1)^{p(B)} 2^{c(B)} \sum_{\xi \in \Sigma(G, \mathcal{G})} \prod_{g \in \mathcal{G}} (\text{Re}(g))^{d(g, B, \xi)}, \end{aligned}$$

where $d(g, B, \xi) = \#\{\text{cycle in } B \text{ with gain } g \text{ under the gain function } \xi\}$.

Let $X_{d_1 d_2 \dots d_\ell}$ denote the event of a fixed basic subgraph B of G possessing exact d_k cyclic components with gain g_k for $\mathcal{G} = \{g_1, g_2, \dots, g_\ell\}$. Then the probability

$$\begin{aligned} \mathbb{P}[X_{d_1 d_2 \dots d_\ell}] &= \left(\frac{1}{|\mathcal{G}|}\right)^{c(B)} \binom{c(B)}{d_1} \binom{c(B) - d_1}{d_2} \dots \binom{c(B) - d_1 - d_2 - \dots - d_{\ell-1}}{d_\ell} \\ &= \frac{1}{|\mathcal{G}|^{c(B)}} \cdot \frac{c(B)!}{d_1! d_2! \dots d_\ell!}, \end{aligned}$$

with $0 \leq d_1, d_2, \dots, d_\ell \leq c(B)$ and $d_1 + d_2 + \dots + d_\ell = c(B)$, since every $U(\mathbb{H})$ -gain cycle is switching equivalent to the gain graph on this cycle with at most one edge not having gain 1 by Lemma 2.2. By Proposition 2.9 and Lemma 2.10, for a fixed basic subgraph B , we have

$$\begin{aligned} &\frac{1}{|\mathcal{G}|^m} (-1)^{p(B)} 2^{c(B)} \sum_{\xi \in \Sigma(G, \mathcal{G})} \prod_{g \in \mathcal{G}} (\text{Re}(g))^{d(g, B, \xi)} \\ &= \frac{1}{|\mathcal{G}|^m} (-1)^{p(B)} 2^{c(B)} \sum_{(d_1, d_2, \dots, d_\ell) \in S_\ell^{c(B)}} |\mathcal{G}|^m \cdot \mathbb{P}[X_{d_1 d_2 \dots d_\ell}] \prod_{k=1}^{\ell} (\text{Re}(g_k))^{d_k} \\ &= \frac{1}{|\mathcal{G}|^m} (-1)^{p(B)} 2^{c(B)} \sum_{(d_1, d_2, \dots, d_\ell) \in S_\ell^{c(B)}} \frac{|\mathcal{G}|^m}{|\mathcal{G}|^{c(B)}} \cdot \frac{c(B)!}{d_1! d_2! \dots d_\ell!} \prod_{k=1}^{\ell} (\text{Re}(g_k))^{d_k} \\ &= (-1)^{p(B)} \left(\frac{2}{|\mathcal{G}|}\right)^{c(B)} \left(\sum_{k=1}^{\ell} \text{Re}(g_k)\right)^{c(B)} = (-1)^{p(B)} \left(\frac{2}{|\mathcal{G}|}\right)^{c(B)} \left(\text{Re}\left(\sum_{k=1}^{\ell} g_k\right)\right)^{c(B)} \quad (3.3) \\ &= (-1)^{p(B)} \left(\frac{2}{|\mathcal{G}|}\right)^{c(B)} \left(\text{Re}\left(\sum_{g \in \mathcal{G}} g\right)\right)^{c(B)} = (-1)^{p(B)} \left(\frac{2}{|\mathcal{G}|}\right)^{c(B)} \cdot 0^{c(B)} \\ &= \begin{cases} 0, & \text{if } c(B) > 0 \\ (-1)^{p(B)}, & \text{if } c(B) = 0 \end{cases} = \begin{cases} 0, & \text{if } B \text{ has at least one cyclic component} \\ (-1)^{\frac{1}{2}|V(B)|}, & \text{if } B \cong \frac{1}{2}|V(B)|K_2 \end{cases}. \end{aligned}$$

The last equality holds because B is basic subgraph of G . If i is odd, B has at least one cyclic component for all $B \in \mathcal{B}_i(G)$, which implies that $\bar{a}_i = 0$. If i is even, for all $B \in \mathcal{B}_i(G)$, the left hand of the Eq. (3.3) is non-zero if and only if $B \cong \frac{i}{2}K_2$, which implies that

$$\bar{a}_i = \sum_{B \in \mathcal{B}_i(G), B \cong \frac{i}{2}K_2} (-1)^{\frac{i}{2}} = (-1)^{\frac{i}{2}} \Phi_{\frac{i}{2}}(G) = (-1)^k \Phi_k(G)$$

with $i = 2k$. By the definition of the matching polynomial, the Eq. (3.1) holds.

(ii) We write $\bar{Q}_{\mathcal{G}}(G, x) = \sum_{k=0}^n (-1)^k \bar{b}_k x^{n-k}$. By Lemma 2.6, we have

$$\begin{aligned}\bar{b}_k &= \frac{1}{|\mathcal{G}|^m} \sum_{\xi \in \Sigma(G, \mathcal{G})} b_k(\xi) = \frac{1}{|\mathcal{G}|^m} \sum_{\xi \in \Sigma(G, \mathcal{G})} \sum_{H \in \mathcal{H}_k} w_{\xi}(H) \\ &= \sum_{H \in \mathcal{H}_k} \frac{1}{|\mathcal{G}|^m} \sum_{\xi \in \Sigma(G, \mathcal{G})} w_{\xi}(H) \\ &= \sum_{H \in \mathcal{H}_k} \frac{1}{|\mathcal{G}|^m} \sum_{\xi \in \Sigma(G, \mathcal{G})} \prod_{i=1}^t |V(T_i)| \prod_{j=1}^c (2 - 2\operatorname{Re}(\xi(C_j))) \\ &= \sum_{H \in \mathcal{H}_k} \frac{1}{|\mathcal{G}|^m} \sum_{\xi \in \Sigma(G, \mathcal{G})} \prod_{i=1}^t |V(T_i)| \prod_{g \in \mathcal{G}} (2 - 2\operatorname{Re}(g))^{d(g, H, \xi)}.\end{aligned}$$

Let $Y_{d_1 d_2 \dots d_{\ell}}$ be the event of a fixed TU-subgraph H of G with exactly d_k unicyclic components with gain g_k for $\mathcal{G} = \{g_1, g_2, \dots, g_{\ell}\}$ in G_{ξ} . Then the probability

$$\mathbb{P}[Y_{d_1 d_2 \dots d_{\ell}}] = \left(\frac{1}{|\mathcal{G}|}\right)^c \binom{c}{d_1} \binom{c - d_1}{d_2} \dots \binom{c - d_1 - d_2 - \dots - d_{\ell-1}}{d_{\ell}} = \frac{1}{|\mathcal{G}|^c} \cdot \frac{c!}{d_1! d_2! \dots d_{\ell}!},$$

with $0 \leq d_1, d_2, \dots, d_{\ell} \leq c$ and $d_1 + d_2 + \dots + d_{\ell} = c$. By Proposition 2.9 and Lemma 2.10, for a fixed TU-subgraph U , we have

$$\begin{aligned}&\frac{1}{|\mathcal{G}|^m} \sum_{\xi \in \mathcal{U}(H, G, \mathcal{G})} \prod_{i=1}^t |V(T_i)| \prod_{g \in \mathcal{G}} (2 - 2\operatorname{Re}(g))^{d(g, H, \xi)} \\ &= \frac{1}{|\mathcal{G}|^m} \prod_{i=1}^t |V(T_i)| \sum_{(d_1, d_2, \dots, d_{\ell}) \in S_l^c} |\mathcal{G}|^m \cdot \mathbb{P}[Y_{d_1 d_2 \dots d_{\ell}}] \prod_{k=1}^{\ell} (2 - 2\operatorname{Re}(g_k))^{d_k} \\ &= \frac{1}{|\mathcal{G}|^m} \prod_{i=1}^t |V(T_i)| \sum_{(d_1, d_2, \dots, d_{\ell}) \in S_l^c} \frac{|\mathcal{G}|^m}{|\mathcal{G}|^c} \cdot \frac{c!}{d_1! d_2! \dots d_{\ell}!} \prod_{k=1}^{\ell} (2 - 2\operatorname{Re}(g_k))^{d_k} \\ &= \frac{1}{|\mathcal{G}|^c} \prod_{i=1}^t |V(T_i)| \left(\sum_{k=1}^{\ell} (2 - 2\operatorname{Re}(g_k)) \right)^c = \frac{2^c}{|\mathcal{G}|^c} \cdot \prod_{i=1}^t |V(T_i)| \left(\ell - \sum_{k=1}^{\ell} \operatorname{Re}(g_k) \right)^c \\ &= \frac{1}{|\mathcal{G}|^c} \cdot w(H) \left(|\mathcal{G}| - \sum_{g \in \mathcal{G}} \operatorname{Re}(g) \right)^c = \frac{1}{|\mathcal{G}|^c} \cdot w(H) \left(|\mathcal{G}| - \operatorname{Re} \left(\sum_{g \in \mathcal{G}} g \right) \right)^c \\ &= \frac{1}{|\mathcal{G}|^c} \cdot w(H) \cdot |\mathcal{G}|^c = w(H).\end{aligned}$$

Therefore we obtain $\bar{b}_k = \sum_{H \in \mathcal{H}_k} w(H)$, which implies the Eq. (3.2) holds. \square

Example 3.2. Let K_3 be a triangle with vertex set $V(K_3) = \{v_1, v_2, v_3\}$ and J_8 be the quaternion group. All TU-subgraphs of K_3 are following: three TU-subgraphs isomorphic

to an edge K_2 , three TU-subgraphs isomorphic to a path P_3 and the unique TU-subgraph isomorphic to K_3 . Moreover, K_3 has three matchings containing an edge and no other matching. Therefore, we have

$$M(K_3, x) = x^3 - 3x \text{ and } W(K_3, x) = x^3 - 6x^2 + 9x - 2.$$

On the other hand, we consider $\xi_1, \xi_2, \dots, \xi_8 \in \Sigma(K_3, J_8)$, which satisfy

$$\begin{aligned} \xi_1((v_1, v_2)) &= \xi_1((v_2, v_3)) = \xi_1((v_3, v_1)) = 1; \\ \xi_2((v_1, v_2)) &= \xi_2((v_2, v_3)) = 1, \xi_2((v_3, v_1)) = -1; \\ \xi_3((v_1, v_2)) &= \xi_3((v_2, v_3)) = 1, \xi_3((v_3, v_1)) = \mathbf{i}; \\ \xi_4((v_1, v_2)) &= \xi_4((v_2, v_3)) = 1, \xi_4((v_3, v_1)) = -\mathbf{i}; \\ \xi_5((v_1, v_2)) &= \xi_5((v_2, v_3)) = 1, \xi_5((v_3, v_1)) = \mathbf{j}; \\ \xi_6((v_1, v_2)) &= \xi_6((v_2, v_3)) = 1, \xi_6((v_3, v_1)) = -\mathbf{j}; \\ \xi_7((v_1, v_2)) &= \xi_7((v_2, v_3)) = 1, \xi_7((v_3, v_1)) = \mathbf{k}; \\ \xi_8((v_1, v_2)) &= \xi_8((v_2, v_3)) = 1, \xi_8((v_3, v_1)) = -\mathbf{k}; \end{aligned}$$

For all $\xi \in \Sigma(K_3, J_8)$, there exists a graph $(K_3)_{\xi_j}$ possessing the same adjacency (resp., Laplacian) polynomial as those of $(K_3)_{\xi_j}$, $j = 1, 2, \dots, 8$ by Lemma 2.1 and Lemma 2.2. According to Lemma 2.5 and 2.6, it is not hard to show that

$$\begin{aligned} P((K_3)_{\xi_1}, x) &= x^3 - 3x - 2, P((K_3)_{\xi_2}, x) = x^3 - 3x + 2, \\ P((K_3)_{\xi_j}, x) &= x^3 - 3x, j = 3, 4, \dots, 8; \\ Q((K_3)_{\xi_1}, x) &= x^3 - 6x^2 + 9x, Q((K_3)_{\xi_2}, x) = x^3 - 6x^2 + 9x - 4, \\ Q((K_3)_{\xi_j}, x) &= x^3 - 6x^2 + 9x - 2, j = 3, 4, \dots, 8. \end{aligned}$$

Consider $\Phi_i = \{\tau \in \Sigma(K_3, J_8) : (K_3)_{\tau} \sim (K_3)_{\xi_i}\}$ and

$$\begin{aligned} \sigma_{ij} : \Phi_i &\rightarrow \Phi_j, \tau_1 \mapsto \tau_2 \\ (\tau_2((v_1, v_2))) &= \tau_1((v_1, v_2)), \tau_2((v_2, v_3)) = \tau_1((v_2, v_3)), \tau_2((v_3, v_1)) = \tau_1((v_3, v_1))x^{-1}y, \end{aligned}$$

for $\tau_1((v_1, v_2))\tau_1((v_2, v_3))\tau_1((v_3, v_1)) = x$, $\tau_2((v_1, v_2))\tau_2((v_2, v_3))\tau_2((v_3, v_1)) = y$ and $i, j = 1, 2, \dots, 8$. It is clear that every σ_{ij} is a bijection. Hence, there are exactly 8^2 distinct J_8 -gain graphs $(K_3)_{\xi}$ share the same adjacency (resp., Laplacian) polynomial with $(K_3)_{\xi_j}$ for all $j = 1, 2, \dots, 8$. Therefore, we obtain

$$\begin{aligned} \bar{P}_{J_8}(K_3, x) &= \frac{8^2}{8^3} \sum_{j=1}^8 P((K_3)_{\xi_j}, x) = x^3 - 3x = M(K_3, x), \\ \bar{Q}_{J_8}(K_3, x) &= \frac{8^2}{8^3} \sum_{j=1}^8 Q((K_3)_{\xi_j}, x) = x^3 - 6x^2 + 9x - 2 = W(K_3, x). \end{aligned}$$

The following result describes the property of forests, which is the only kind of graphs such that its adjacency (resp., Laplacian) polynomial is exactly equal to its \mathcal{G} -average of adjacency (resp., Laplacian) polynomials. It also shows that the condition “ \mathcal{G} is non-trivial” in Theorem 3.1 cannot be removed.

Corollary 3.3. *Let \mathcal{G} be a finite subgroup of $U(\mathbb{H})$ and G be a graph. Suppose that $P(G_\xi, x)$ (resp., $Q(G_\xi, x)$) is the adjacency (resp., Laplacian) polynomial of a \mathcal{G} -gain graph G_ξ . $M(G, x), W(G, x)$ are the matching polynomial and the weighted TU-subgraph polynomial of G respectively. The following five statements are equivalent:*

- (i) G is a forest;
- (ii) $P(G_\xi, x) = M(G, x)$, for all $\xi \in \Sigma(G, \mathcal{G})$;
- (iii) $P(G_\xi, x) = M(G, x)$, for some $\xi \in \Sigma(G, \mathcal{G})$ such that G_ξ is balanced;
- (iv) $Q(G_\xi, x) = W(G, x)$;
- (v) $Q(G_\xi, x) = W(G, x)$, for some $\xi \in \Sigma(G, \mathcal{G})$ such that G_ξ is balanced.

Proof. (i) \Rightarrow (ii) and (i) \Rightarrow (iv): It is immediate if $\mathcal{G} = \{1\}$ and now we suppose \mathcal{G} is non-trivial. G_ξ is balanced for all $\xi \in \Sigma(G, \mathcal{G})$ since the forest G is acyclic. According to Lemma 2.1 and Lemma 2.3, $P(G_\xi, x) = P(G_1, x)$ and $Q(G_\xi, x) = Q(G_1, x)$ for all $\xi \in \Sigma(G, \mathcal{G})$. Furthermore, by Theorem 3.1 and Definition 1.1, we have

$$M(G, x) = \bar{P}_\mathcal{G}(G, x) = P(G_\xi, x) \text{ and } W(G, x) = \bar{Q}_\mathcal{G}(G, x) = Q(G_\xi, x).$$

(ii) \Rightarrow (iii) and (iv) \Rightarrow (v): Both are obvious.

(iii) \Rightarrow (i): For $\xi \in \Sigma(G, \mathcal{G})$ such that G_ξ is balanced, $G_1 \sim G_\xi$, which implies that $P(G, x) = P(G_1, x) = P(G_\xi, x) = M(G, x)$. Since the matching polynomial of a graph coincides with its adjacency polynomial if and only if the graph is a forest [6, Corollary 2.1], we obtain G is a forest.

(v) \Rightarrow (i): As the same way to the proof of (iii) \Rightarrow (i), we have $Q(G, x) = W(G, x) = \sum_{k=0}^n (-1)^k \sum_{H \in \mathcal{H}_k} w(H)x^{n-k}$. By Theorem 7.2.8 of [4], then

$$Q(G, x) = \sum_{k=0}^n (-1)^k \sum_{|E(F)|=k} \mathcal{P}(F)x^{n-k},$$

where the sum is taken over all spanning forests F , and $\mathcal{P}(F)$ is the product of the numbers of vertices in the components of F . Therefore,

$$\sum_{H \in \mathcal{H}_k} w(H) = \sum_{|E(F)|=k} \mathcal{P}(F)$$

for all $k = 0, 1, 2, \dots, n$. Assume that G has at least one cycle C_t . Then $C_t \cup (n-t)K_1$ is a TU-subgraph of G with t edges. Noting that all spanning forests F with t edges are also TU-subgraphs of G , we have

$$\sum_{H \in \mathcal{H}_t} w(H) \geq 2 + \sum_{|E(F)|=t} \mathcal{P}(F) > \sum_{|E(F)|=t} \mathcal{P}(F),$$

a contradiction. Hence, G is a forest. \square

Naturally, we wonder whether there exists a gain function $\xi \in \Sigma(G, U(\mathbb{H}))$ such that $P(G_\xi, x) = M(G, x)$ and $Q(G_\xi, x) = W(G, x)$ for G containing some cycles. In Example

3.2, gain functions $\xi_j, j = 3, \dots, 8$ satisfy this condition. If there exists a gain function $\xi \in \Sigma(G, U(\mathbb{H}))$ such that $\text{Re}(\xi(C)) = 0$ for all cycles C in G , then $P(G_\xi, x) = M(G, x)$ and $Q(G_\xi, x) = W(G, x)$ by Lemma 2.5 and Lemma 2.6. The following proposition shows that there is no such a gain function on the completed graph K_4 .

Proposition 3.4. There is no gain function $\varphi \in \Sigma(K_4, U(\mathbb{H}))$ such that $\text{Re}(\varphi(C)) = 0$ for all cycles C in K_4 .

Proof. Assume that there exists a gain function $\varphi \in \Sigma(K_4, U(\mathbb{H}))$ such that $\text{Re}(\varphi(C)) = 0$ for all cycles C in K_4 with vertex set $V(K_4) = \{v_1, v_2, v_3, v_4\}$. Define two switching function $\xi, \nu : V(K_4) \rightarrow U(\mathbb{H})$ as follows:

$$\xi(v_i) = \begin{cases} 1, & i = 1, 4, \\ (\varphi((v_1, v_2)))^{-1}, & i = 2, \\ (\varphi((v_1, v_2))\varphi((v_2, v_3)))^{-1}, & i = 3. \end{cases}, \quad \nu(v_i) = \begin{cases} 1, & i = 1, \\ (\varphi^\xi((v_1, v_2)))^{-1}, & i = 2, \\ (\varphi^\xi((v_1, v_2))\varphi^\xi((v_2, v_3)))^{-1}, & i = 3, \\ (\varphi^\xi((v_1, v_2))\varphi^\xi((v_2, v_4)))^{-1}, & i = 4. \end{cases}.$$

It can be checked that $\varphi^{\xi\nu}((v_1, v_2)) = \varphi^{\xi\nu}((v_2, v_3)) = \varphi^{\xi\nu}((v_2, v_4)) = 1$. Recall the result of Lemma 2.4 implies the real part of the gain of a cycle is an invariant of switching equivalence. Without loss of generality, suppose that $\varphi((v_1, v_2)) = \varphi((v_2, v_3)) = \varphi((v_2, v_4)) = 1$.

We write $\varphi((v_3, v_4)) = b_1\mathbf{i} + c_1\mathbf{j} + d_1\mathbf{k}$, $\varphi((v_1, v_3)) = b_2\mathbf{i} + c_2\mathbf{j} + d_2\mathbf{k}$ and $\varphi((v_4, v_1)) = b_3\mathbf{i} + c_3\mathbf{j} + d_3\mathbf{k}$ since the real part of the gains of cycle $v_2v_3v_4v_2$, $v_1v_2v_3v_1$ and $v_1v_2v_4v_1$ are all zero, where $b_i^2 + c_i^2 + d_i^2 \neq 0$, $i = 1, 2, 3$. Now consider that the real part of any cycle containing edge v_3v_4 is zero, i.e.,

$$\text{Re}(\varphi(v_1v_3v_4v_1)) = \text{Re}(\varphi(v_1v_2v_4v_3v_1)) = \text{Re}(\varphi(v_1v_4v_3v_2v_1)) = \text{Re}(\varphi(v_1v_4v_2v_3v_1)) = 0.$$

Hence

$$(c_2d_3 - d_2c_3)b_1 + (d_2b_3 - b_2d_3)c_1 + (b_2c_3 - c_2b_3)d_1 = 0, \quad (3.4a)$$

$$b_1b_2 + c_1c_2 + d_1d_2 = 0, \quad (3.4b)$$

$$b_1b_3 + c_1c_3 + d_1d_3 = 0, \quad (3.4c)$$

$$b_2b_3 + c_2c_3 + d_2d_3 = 0. \quad (3.4d)$$

According to Eq. (3.4a), we obtain

$$\det \begin{pmatrix} b_1 & c_1 & d_1 \\ b_2 & c_2 & d_2 \\ b_3 & c_3 & d_3 \end{pmatrix} = 0$$

and then the three vectors $(b_1, c_1, d_1), (b_2, c_2, d_2), (b_3, c_3, d_3)$ in \mathbb{R}^3 are coplanar. By Eq. (3.4b) and (3.4c), (b_1, c_1, d_1) is orthogonal to both (b_2, c_2, d_2) and (b_3, c_3, d_3) . Hence, (b_2, c_2, d_2) is parallel to (b_3, c_3, d_3) and we can write $(b_2, c_2, d_2) = t(b_3, c_3, d_3)$ for some $t \in \mathbb{R}$. Together with the Eq. (3.4d), $t(b_3^2 + c_3^2 + d_3^2) = 0$, which implies $b_2^2 + c_2^2 + d_2^2 = t^2(b_3^2 + c_3^2 + d_3^2) = 0$, a contradiction. \square

Acknowledgments

This research is supported by the National Natural Science Foundation of China (No. 12331012). The authors would like to thank the anonymous referees for their valuable comments and suggestions.

References

- [1] S. A. Amitsur, *Finite subgroup of division rings*, Transactions of American Mathematical Society 80 (1955) 361–386.
- [2] F. Belardo, S. K. Simić, *On the Laplacian coefficients of signed graphs*, Linear Algebra Appl. 475 (2015) 94–113.
- [3] F. Belardo, M. Brunetti, N. J. Coble, N. Reff, H. Skogman, *Spectra of quaternion unit gain graphs*, Linear Algebra Appl. 632 (2022) 15–49.
- [4] D. Cvetković, P. Rowlinson, S. Simić, *An introduction to the theory of graph spectra*, Cambridge Univ. Press, Cambridge (2010).
- [5] F. J. Dyson, *Quaternion determinants*, Helv. Phys. Acta 45 (1972) 289–302.
- [6] C. D. Godsil, I. Gutman, *On the matching polynomial of a graph*, in: Algebraic Methods in Graph Theory, Vol. I, II (Szeged, 1978), in: Colloq. Math. Soc. János Bolyai, vol. 25, North-Holland, Amsterdam, New York (1981) 241–249.
- [7] I. Gutman, *The acyclic polynomial of a graph*, Publ. Inst. Math., (Beograd) 22 (1977) 63–69.
- [8] Y. Hou, J. Li, Y. Pan, *On the Laplacian eigenvalues of signed graphs*, Linear Multilinear Algebra 51 (1) (2003) 21–30.
- [9] Y. Hou, *Bounds for the least Laplacian eigenvalue of a signed graph*, Acta Math. Sin. Engl. Ser. 21 (4) (2005) 955–960.
- [10] K. K. Kataria, *A probabilistic proof of the multinomial theorem*, American Mathematical Monthly 123 (2016) 94–96.
- [11] R. Mehatari, M. R. Kannan, A. Samanta, *On the adjacency matrix of a complex unit gain graph*, Linear Multilinear Algebra 70 (2022) 1798–1813.
- [12] E. H. Moore, *On the determinant of an Hermitian matrix of quaternionic elements*, Bull. Am. Math. Soc. 28 (1922) 161–162.
- [13] N. Reff, *Spectral properties of complex unit gain graphs*, Linear Algebra Appl. 436 (2012) 3165–3176.

- [14] H. Takagi, *Conformally flat Riemannian manifolds admitting a transitive group of isometries II*, Tohoku Mathematical Jurnal 27 (1975) 445–451.
- [15] G. Vincent, *Les groupes linéaires finis sans points fixés*, Comment. Math. Helv. vol. 20 (1947) 117–171.
- [16] T. Zaslavsky, *Biased graphs. I. Bias, balance, and gains*, Journal of Combinatorial Theory, Series B 47 (1989) 32–52.
- [17] Y. Zhang, H. Chen, *The average Laplacian polynomial of a graph*, Discrete Applied Mathematics 283 (2020) 737–743.

Contact Information

Yaoping Hou

yphou@hunnu.edu.cn

College of Mathematics and Statistics, Hunan Normal University

Changsha, Hunan, 410081, China

 <https://orcid.org/0000-0001-8101-6968>

Wenjun Xie

531865687@qq.com

College of Mathematics and Statistics, Hunan Normal University

Changsha, Hunan, 410081, China

 <https://orcid.org/0009-0006-5364-9008>