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Abstract

We introduce a generalization of parking functions in which cars are limited in
their movement backwards and forwards by two nonnegative integer parameters k and
ℓ, respectively. In this setting, there are n spots on a one-way street and m cars
attempting to park in those spots, and 1 ≤ m ≤ n. We let α = (a1, a2, . . . , am) ∈ [n]m

denote the parking preferences for the cars, which enter the street sequentially. Car
i drives to their preference ai and parks there if the spot is available. Otherwise, car
i checks up to k spots behind their preference, parking in the first available spot it
encounters if any. If no spots are available, or the car reaches the start of the street,
then the car returns to its preference and attempts to park in the first spot it encounters
among spots ai+1, ai+2, . . . , ai+ℓ. If car i fails to park, then parking ceases. If all cars
are able to park given the preferences in α, then α is called a (k, ℓ)-pullback (m,n)-
parking function. Our main result establishes counts for these parking functions in
two ways: counting them based on their final parking outcome (the order in which the
cars park on the street), and via a recursive formula. Specializing ℓ = n− 1, our result
gives a new formula for the number of k-Naples (m,n)-parking functions and further
specializing m = n recovers a formula for the number of k-Naples parking functions
given by Christensen et al. The specialization of k = ℓ = 1, gives a formula for the
number of vacillating (m,n)-parking functions, a generalization of vacillating parking
functions studied by Fang et al., and the m = n result answers a problem posed by the
authors. We conclude with a few directions for further study.

1 Introduction

Consider the following parking scenario. There are m cars attempting to park on a one-way
street with n parking spots (with n ≥ m). The queue of cars has a list of parking spot
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preferences represented by a tuple, α = (a1, a2, . . . , am), where each ai ∈ [n] = {1, 2, . . . , n}.
The cars enter the street in sequential order from car 1 to car m, and firstly will attempt to
park in their preference. If that space is unoccupied, then the car parks there. Otherwise,
the car proceeds forward and parks in the first available spot it encounters (if there is any).
We refer to this parking process as the classical parking rule. If the list of parking preferences
allows all cars to park among the n spots on the street, then we call the list of preferences an
(m,n)-parking function. For example, when n = m = 4, the preference list (1, 4, 3, 2) allows
all of the cars to park as they each prefer a different parking spot. However, when m = 3
and n = 4, the preference list (1, 4, 4) is not a parking function as the third car finds the
fourth spot occupied by the second car, and drives forward to the end of the street, unable
to park.

Throughout, we let PFm,n denote the set of parking functions with m cars and n spots,
and when the number of cars and spots is clear from context, we simply refer to this set as
the set of parking functions. Of course, if m > n, then, no matter what the cars’ preferences
are, there will always be a car that fails to park. Hence, wheneverm > n, |PFm,n| = 0. In the
case where m ≤ n, Konheim and Weiss [11] established that |PFm,n| = (n+1−m)(n+1)m−1.
In particular, if n = m, we let PFn = PFn,n, and note that the cardinality of this set of
parking functions simplifies nicely to |PFn| = (n + 1)n−1. There are many generalizations
of parking functions and most important to our study are k-Naples parking functions and
ℓ-interval parking functions.

Introduced by Baumgardner [3], and generalized by Christensen, Harris, Jones, Loving,
Ramos Rodŕıguez, Rennie, and Rojas Kirby [5], the set of k-Naples parking functions sets
m = n and extends the classical parking rule by allowing a car that finds its preferred parking
spot occupied to first back up to k spaces, checking one spot at a time, for 0 ≤ k < n, in its
attempt to park. If possible, the car parks in the first available spot among those k spots.
If none of the k spaces before its preferred parking spot are available (or the car reaches
the start of the street), then the car continues past its preferred spot and parks in the first
available spot beyond it. We call this parking rule the k-Naples parking rule. If the parking
preference α allows all cars to park using the k-Naples parking rule, then we say that α is
a k-Naples parking function of length n. We let PFn(k) denote the set of k-Naples parking
functions of length n. If k = 0, then PFn(0) = PFn. Also, when k = 1, the set PFn(1) is
called the set of Naples parking functions of length n. Based on these definitions one can
observe that PFn(k − 1) ⊆ PFn(k) for all 0 < k < n. The set inclusion occurs because
every car that can park when allowed to back up k − 1 spots can also park when allowed
to back up k spots. Christensen et al. established a recursive formula for the number of k-
Naples parking functions [5, Theorem 1.1]. In our work, we extend the definition of k-Naples
parking functions to the case where there are more parking spaces than cars, and we refer
to this set as the set of k-Naples (m,n)-parking functions. We denote this set by PFm,n(k).
In Corollary 3.15, we give a recursion for the number of k-Naples (m,n)-parking functions
for all m ≤ n and 0 ≤ k < n.

Another generalization of classical parking functions called ℓ-interval (m,n)-parking func-
tions was introduced by Aguilar-Fraga, Elder, Garcia, Hadaway, Harris, Harry, Hogan,
Johnson, Kretschmann, Lawson-Chavanu, Mart́ınez Mori, Monroe, Quiñonez, Tolson III,
and Williams II [2]. In this scenario, a car drives to its preference and parks there if the spot
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is available. Otherwise, if occupied, then the car drives forward, checks up to ℓ spots past its
preference, and parks in the first available spot it encounters among those ℓ spots, if such a
spot exists. If all of the cars can park under the ℓ-interval parking rule, the list of preferences
is an ℓ-interval parking function. For example, if m = n and ℓ = 0, then the cars can only
park in their preferred parking spot, so the set of 0-interval parking functions is precisely the
set of permutations on [n], which we denote by Sn. In the case where ℓ = n− 1, then cars
are able to traverse the full street in seeking a parking spot, hence the set of (n− 1)-interval
parking functions is exactly the set PFm,n. As a concrete example, if m = n = 3, then
(1, 1, 1) is not a 1-interval parking function, because when car 3 attempts to park, the only
remaining unoccupied spot on the street is spot 3, which is more than one spot ahead of its
preferred spot. Among their results, Aguilar-Fraga et al. provide formulas for the number of
ℓ-interval (m,n)-parking functions, see [2, Theorems 3.7 and 3.8].

Based on the k-Naples and ℓ-interval parking rules, we consider a new parking rule in
which cars are restricted in their backward and forward movement whenever they find their
preferred parking spot occupied. This is reminiscent of pullback car toys (see Figure 1),
which are a popular children’s toy car with a winding mechanism used by placing the car
on the floor and rolling it backwards, then releasing, the car is propelled forward some
distance. Based on this toy, we use the language of pullback parking rule to describe the
behavior of cars when they find their preferred parking spot occupied. We now give the
technical definition for this parking rule. For fixed nonnegative integers k and ℓ, we defined
the (k, ℓ)-pullback parking rule: given a parking preference α = (a1, a2, . . . , am) ∈ [n]m, for
each i ∈ [m], car i drives to its preferred parking spot ai. If it is available, then the car
parks there. If the spot is occupied, then the car checks up to k spots behind its preference,
parking in the first available spot it encounters (if any). If all of those parking spots are
occupied or the car reaches the start of the street, then the car checks up to ℓ spots ahead of
its preference, parking in the first available spot it encounters (if any). If the car fails to park
within those spots, then the car exits the street without parking. If all cars can park using the
(k, ℓ)-pullback parking rule, then the preference list is called a (k, ℓ)-pullback (m,n)-parking
function. We let PFm,n(k, ℓ) denote the set of all (k, ℓ)-pullback (m,n)-parking functions.

Figure 1: Pullback toy cars. Image credit: Lucy Martinez.

In Figure 2, we illustrate that (3, 2, 3, 1) ∈ PF4,5(1, 2), since all of the cars are able to park
with the given constraints. For the preference (3, 2, 2, 1) using the (1, 2)-pullback parking
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rule when m = 4 and n = 5, car 4 finds the first spot occupied by car 3, and is unable to
backup as it has reached the start of the street, so it proceeds forward but finds the two
spots past its preference also occupied. Therefore, car 4 fails to park and (3, 2, 2, 1) is not a
(1, 2)-pullback (4, 5)-parking function.

Figure 2: Parking procedure for α = (3, 2, 3, 1) using the (1, 2)-pullback parking rule.

Our major contributions include two formulas to count the number of (k, ℓ)-pullback
(m,n)-parking functions for all nonnegative integers k and ℓ, and all positive integers 1 ≤
m ≤ n. In Theorem 2.15 we use a technique known as “counting through permutations”,
which gives a count for the number of parking functions that park cars in a specified order.
The name of this technique comes from the fact that when m = n, the order in which the
cars park on the street can be described using a permutation in Sn. In Theorem 3.14 we
provide a purely recursive formula for this count.

This article is organized as follows. In Section 2, we begin by utilizing the counting
parking functions through permutations technique to prove Theorem 2.15, giving our first
formula for the number of (k, ℓ)-pullback (m,n)-parking functions. In Corollary 2.16, we give
an alternate formula for the number of k-Naples (m,n)-parking functions. In Section 3, we
recall the formula for the number of k-Naples parking functions with the same number of cars
and spots [5, Theorem 1.1], and then prove Theorem 3.14, which gives a recursive formula
for the number of (k, ℓ)-pullback parking functions with m cars and n spots. Once again,
in Corollary 3.15, we give an alternate formula for the number of k-Naples (m,n)-parking
functions. We conclude with Section 4, where we provide directions for future research.

Remark 1.1. For code supporting the work in this project we provide the following GitHub
repository [10].

2 Counting through permutations

In this section, we recall a technique known in the literature as “counting through permutations,”
which has been used to count the number of parking preferences parking cars in a specified
order. To make our approach precise, we begin with a definition.
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Definition 2.1 ([7, 13]). Given a parking function α = (a1, a2, . . . , an) ∈ [n]n, define the
outcome of α by O(α) = π1π2 · · · πn ∈ Sn, where πi = j denotes that car j parked in spot i.

Example 2.2. If α = (1, 1, 1, 2, 4, 4, 5, 7) ∈ PF8, then the outcome of α is given by O(α) =
12345678. If α = (7, 1, 5, 2, 4, 1, 4, 1) ∈ PF8, then the outcome is O(α) = 24653718.

We recall the following result which counts parking functions with a specified outcome.

Proposition 2.3. [7, Proposition 3.3] Let σ = σ1σ2 · · ·σn ∈ Sn be a permutation. The
number of parking functions with outcome σ is

∏n
i=1 L(σi), where L(σi) is the length of the

longest subsequence, σj, σj+1, . . . , σi, of σ such that σt ≤ σi for all j ≤ t ≤ i.

Proposition 2.3 was used to give the number of parking functions by counting through
permutations. We recall this result next.

Corollary 2.4 ([7, Corollary 3.5],[14, Exercise 5.49(d,e)]). It follows that the number of
parking functions is given by |PFn| =

∑
σ∈Sn

(
∏n

i=1 L(σi)) = (n+ 1)n−1.

We extend Definition 2.1 for the case where there are more parking spots than cars.

Definition 2.5. [2, Definition 3.1] Let Sm,n denote the set of permutations of the multiset
{0, . . . , 0} ∪ [m] with n − m zeros. Given an (m,n)-parking function α = (a1, a2, . . . , am),
define the outcome of α by O(α) = π1π2 · · · πn ∈ Sm,n where πi = j ∈ [m] denotes that car
j parked in spot i, and πi = 0 indicates that spot i is vacant.

Definition 2.6. Let π = π1π2 · · · πn ∈ Sm,n. Then, for each i ∈ [n] with πi > 0, let Pref(πi)
denote the set of preferences of car πi such that it is the ith car parked on the street.

Our goal is to answer the following question: Given π = π1π2 · · · πn ∈ Sm,n, how many
(k, ℓ)-pullback (m,n)-parking functions, α ∈ PFm,n(k, ℓ), have outcome O(α) = π? Before
stating this result, we provide the following illustrative example.

Example 2.7. Let m = 8, n = 11, k = 1, ℓ = 2 and consider π = 08134005672. Then we
make the following observations:

� Car 1 parked in the 3rd spot on the street. Since it was the first car entering the street,
it must have preferred spot 3. Hence, |Pref(π3 = 1)| = |{3}| = 1.

� Car 2 parked in the 11th spot on the street. Since there were no cars already parked
immediately to the left or right of this spot, car 2 could have only preferred spot 11.
Hence, |Pref(π11 = 2)| = |{11}| = 1.

� Car 3 parked in the 4th spot on the street. Even though car 1 was already parked
immediately to the left of spot 4, if car 3 had preferred spot 3, it would have backed
up and parking in the 2nd spot and would not have ended up in the 4th spots, so car 3
could have only preferred spot 4 and parked there. Hence, |Pref(π4 = 3)| = |{4}| = 1.
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� Car 4 parked in the 5th spot on the street. Notice that cars 1 and 3 have parked to
the immediate left of spot 5. If car 4 had preferred spot 3, it would have backed up
and parked in the 2nd spot and would not have ended up in spot 5. However, car 4
could have preferred spot 4 because, since k = 1, it would have backed up to spot 3
first and, finding it occupied, then pulled forward parking in spot 5, which is within
its tolerance as ℓ = 2. Car 4 could have also preferred spot 5 and parked there. Hence,
|Pref(π5 = 4)| = |{4, 5}| = 2.

� Car 5 parked in the 8th spot on the street. Since there were no cars parked to the
immediate left or right of spot 8, car 5 could have only preferred spot 8 and parked
there. Hence, |Pref(π8 = 5)| = |{8}| = 1.

� Car 6 parked in the 9th spot on the street. Car 6 could not have preferred spot 8, as
it would have backed up and parking in spot 7 and would not have ended up parking
in spot 9. Thus, car 6 could only have preferred spot 9 and parked there. Hence,
|Pref(π9 = 6)| = |{9}| = 1.

� Car 7 parked in the 10th spot on the street. If car 7 preferred spot 9 it would find
it occupied and since k = 1, it also would have found spot 8 occupied. Then moving
forward, it would park in spot in 10. If car 7 preferred spot 11, finding it occupied it
could have backed into spot 10. Finally, it could also be that car 7 preferred spot 10
and parked there. Hence, |Pref(π10 = 7)| = |{9, 10, 11}| = 3.

� Car 8 parked in the 2nd spot on the street. If car 8 preferred spot 3, finding it
occupied, it would back into spot 2. If car 8 preferred spot 2, it would park there.
Hence, |Pref(π2 = 8)| = |{2, 3}| = 2.

The total number of parking functions, α = (a1, a2, . . . , a8) ∈ PF8,11, that park the cars
in order π must satisfy ai ∈ Pref(πj = i) for each i ∈ [m]. Thus, the total number of these
parking functions is given by the product

∏m
i=1 |Pref(πj = i)| = 1 · 1 · 1 · 2 · 1 · 1 · 3 · 2 = 12.

As Example 2.7 illustrates, determining the possible preferences of car i requires knowledge
on what cars are parked immediately to the left and to the right of car i. The intuition here
is that a car could have

1. found its preferred spot occupied and the car backed into its final parking spot. This
would only happen if it preferred a spot to the right of where it parked, and it parked
by having checked no more than k spots to the left of its preference;

2. found its preferred spot occupied and the car moved forward into its final parking spot.
This would only happen if its preference was to the left of where it parked, and it had
already checked at most k spots to the left of its preference finding all of those spots
occupied. Then the car would return to its preference and find its final parking spot
within ℓ spots to the right of its preference;

3. found its preferred spot available, and parked there.
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To count the number of pullback parking functions that park the cars in the fixed order
π ∈ Sm,n, requires us to determine the counts for the preferences, which we do using the
three cases above. We define this next.

Definition 2.8. Fix π = π1π2 · · · πn ∈ Sm,n. Then, for each i ∈ [n] with πi > 0, let

� B(πi) be the number of preferences for car πi satisfying Case (1), and

� F(πi) be the number of preferences for car πi satisfying Case (2).

Next we define a function which counts cars that arrived prior to car πi and parked
contiguously to the immediate right of car πi.

Definition 2.9. Fix π = π1π2 · · · πn ∈ Sm,n. Then, for each i ∈ [n] with πi > 0, let
Right(πi) be the length of the longest consecutive subsequence, πi+1, πi+2, . . . , πi+x, such
that 0 < πt < πi for all i+ 1 ≤ t ≤ i+ x.

Next we define a function which counts cars that arrived prior to car πi and parked
contiguously to the immediate left of car πi.

Definition 2.10. Fix π = π1π2 · · · πn ∈ Sm,n. Then, for each i ∈ [n] with πi > 0, let
Left(πi) be the length of the longest consecutive subsequence, πy, πy+1, . . . , πi−1, such that
0 < πt < πi for all y ≤ t ≤ i− 1.

We can now give formulas for the numbers B(πi) and F(πi).

Lemma 2.11. Let α ∈ PFm,n with outcome permutation π = π1π2 · · · πn ∈ Sm,n. For each
i ∈ [n] with πi > 0, if car πi found its preferred spot occupied and backed into its final parking
spot at position i (as described in Case 1), then the number of preferences for car πi is given
by B(πi) = min(Right(πi), k). Moreover, whenever πi = 0, then B(0) = 0.

Proof. By Definition 2.9, Right(πi) counts the number of cars πi+1, πi+2, . . . , πi+x which
parked before car πi entered the street and did so to the immediate right (and contiguously)
of the spot i in which car πi ultimately parks. Namely, the cars πi+1, πi+2, . . . , πi+x parked
in spots i + 1, i + 2, . . . , i + x. Since car πi could prefer any of the first k of these occupied
spots in order to then back into the ith spot, we must have that B(πi) = min(Right(πi), k).

Whenever πi = 0, this is not car, so it cannot have any preferences, hence B(0) = 0.

Now, it also could be that car πi satisfies Case (2), where the car parked in spot i by first
checking k spaces back from its preference and then going forward up to ℓ spaces to park in
spot i. To account for these preferences, we consider the cars that parked immediately to
the left of spot i that parked before car πi entered the street.

Lemma 2.12. Let α ∈ PFm,n with outcome permutation π = π1π2 · · · πn ∈ Sm,n. For each
i ∈ [n], if car πi found its preferred spot occupied and moved forward into its final parking
spot (as described in Case 2), then the number of preferences for car πi is given by

F(πi) =


0 if πi = 0

0 if Left(πi) = 0

min(i− 1, ℓ) if 0 < Left(πi) = i− 1

max(min(Left(πi)− k, ℓ), 0) if 0 < Left(πi) < i− 1.
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Proof. By definition of F(πi) if F(π1) = 0, as there are no cars to the left of π1, which
agrees with the given formula as min(1 − 1, ℓ) = 0. Moreover, for any 1 < i ≤ n such that
Left(πi) = 0, there are no cars to the left, hence F(πi) = 0. Lastly, if πi = 0 this is not a car
and so it cannot have preferences, namely F(0) = 0. We now consider 1 < i ≤ n for which
πi > 0 and argue using three cases:

1. all spots to the left of spot i are occupied before car πi parks, i.e., Left(πi) = i− 1

2. not all spots to the left of spot i are occupied, i.e., Left(πi) < i− 1, and

(a) k < Left(πi), or

(b) k ≥ Left(πi).

For (1): In this case all of the spots 1, 2, . . . i− 1 are occupied, so regardless of the value
of k, if car πi prefers any of those spots, backing up any amount it will always find occupied
spots or reach the start of the street. So the only parameter affecting the preferences for
car i is ℓ. If all spots to the left of spot i are filled before car πi enters to park, then
Left(πi) = i− 1. This means spots 1, 2, . . . , i− 1 are occupied by cars π1, π2, . . . , πi−1, where
those cars arrived and parked before car πi entered the street. Since car πi can only move
forward ℓ spaces, it can only have preferred up to ℓ of the spaces to the left of spot i, namely
the spots i− ℓ, i+ 1− ℓ . . . , i− 1. However, we need to account for the back that i− ℓ may
be negative, hence the number of possible spots that car πi can prefer to as to move forward
and park in spot i is limited to min(Left(πi), ℓ) = min(i− 1, ℓ).

For (2a): Assume that not all spots to the left of i are occupied and k < Left(πi). Let
x, x + 1, . . . , i− 1 be the sequence of occupied spots where spot x− 1 is empty, and x > 1.
Then Left(πi) = (i−1)−x+1 = i−x, and hence x = i−Left(πi). Let ai be the preference for
car πi. If x ≤ ai ≤ x+k−1, then car πi would find its preference occupied and checking up to
k spots behind its preference car πi would find spot x−1 empty, and would then park there.
Contradicting that car πi parks in spot i. Thus ai ≥ x + k (and recall in this case ai ≤ i).
That is, car πi can prefer spots x+ k, x+ k+ 1, . . . , i− 1 and hence it can have Left(πi)− k
preferences to the left of where it parked. However, in order for car πi to ultimately park
in spot i, these preferences must also be no more than ℓ spots from spot i. These possible
preferences are then limited to the parking spots numbered i− ℓ, i− ℓ+ 1, . . . , i− 1. These
conditions require that the preference ai for car πi satisfy

x+ k ≤ai ≤ i− 1 and (2.1)

i− ℓ ≤ai ≤ i− 1. (2.2)

As both inequalities must hold, we have that max(x+ k, i− ℓ) ≤ ai ≤ i− 1. Hence, since ai
satisfies this inequality, the number of preferences that ai can have is

i− 1− (max(x+ k, i− ℓ)) + 1 = i−max(x+ k, i− ℓ).

Now note that

i−max(x+ k, i− ℓ) = i− (−min(−x− k,−i+ ℓ) = i+min(−x− k,−i+ ℓ) (2.3)

= min(i− x− k, ℓ). (2.4)
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Substituting x = i− Left(πi) into Equation (2.4) yields

i−max(x+ k, i− ℓ) = min(i− i+ Left(πi)− k, ℓ) = min(Left(πi)− k, ℓ).

Hence, the number of preferences is F(πi) = min(Left(πi)− k, ℓ). As Left(πi)− k > 0, then
min(Left(πi) − k, ℓ) = max(min(Left(πi) − k, ℓ), 0). Therefore F(πi) = max(min(Left(πi) −
k, ℓ), 0), as claimed.

For (2b): Next, we consider the case where k ≥ Left(πi). In this case, car πi could
not have preferred any of the Left(πi) spaces to the left of spot i, because then it would
have backed up past those Left(πi) spaces and parked in an available spot, contradicting
that car πi parks in spot i. So, in this case, car πi can prefer 0 spots to the left of spot i.
Thus, since k ≥ Left(πi), min(Left(πi) − k, ℓ) is now negative, when we need it to be zero.
Hence, the number of preferences for car πi must satisfy F(πi) = max(min(Left(πi)−k, ℓ), 0),
as desired.

These lemmas establish the following result.

Corollary 2.13. Fix π ∈ Sm,n. Then for each i ∈ [n] with πi > 0, the number of preferences
for car πi is given by |Pref(πi)| = B(πi) + F(πi) + 1.

Proof. It follows from Lemmas 2.11 and 2.12, that, if Pref(πi) denotes the set of possible
preferences of an actual car πi, namely πi > 0, then by Definition 2.8, the number of
preferences is given by F(πi) + B(πi) + 1, where the 1 comes from a car being able to park
in its preference.

Whenever πi = 0, we have shown that F(0) = B(0) = 0, but for convenience we let
|Pref(πi = 0)| = 1. We can now use Corollary 2.13 to count the number of (k, ℓ)-pullback
(m,n)-parking functions parking the cars in the order π.

Lemma 2.14. Let O−1(π) denote the set of pullback parking functions with m cars and
n spots, m ≤ n, parking the cars in the order π. Fix π = π1π2 · · · πn ∈ Sm,n. For any
nonnegative integers k, ℓ and positive integers 1 ≤ m ≤ n, we have that

|O−1(π)| = |{α ∈ PFm,n(k, ℓ) : O(α) = π}| =

(
n∏

i=1

[B(πi) + F(πi) + 1]

)
.

Proof. This follows directly from Corollary 2.13 and by taking the product over all i ∈ [n],
where again we remark that if πi = 0, then |Pref(πi = 0)| = 1.

We now give our first formula to count (k, ℓ)-pullback (m,n)-parking functions.

Theorem 2.15. Fix any nonnegative integers k, ℓ and positive integers 1 ≤ m ≤ n. The
number of (k, ℓ)-pullback (m,n)-parking functions is given by

|PFm,n(k, ℓ)| =
∑

π∈Sm,n

|O−1(π)| =
∑

π=π1π2···πn∈Sm,n

(
n∏

i=1

[B(πi) + F(πi) + 1]

)
.

Proof. This follows directly from Lemma 2.14 and by taking the sum over all Sm,n.
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2.1 Applications of main theorem

We conclude this section by specializing parameters in Theorem 2.15 which give new formulas
for k-Naples (m,n)-parking functions and vacillating (m,n)-parking functions. We note that
neither of these formulas have appeared in the literature.

We can now specify ℓ = n−1, in which case PFm,n(k, n−1) = PFm,n(k), as the parameter
ℓ = n− 1 does not restrict the forward motion of cars. With this in mind, we arrive at the
following formula for the number of k-Naples (m,n)-parking functions.

Corollary 2.16. Let B̃ and F̃ denote the specialization of F and B (from Definition 2.8)
with n = ℓ − 1, respectively. Then the number of k-Naples parking functions with m cars
and n spots such that 1 ≤ m ≤ n is given by

|PFm,n(k)| =
∑

π=π1π2···πn∈Sm,n

(
n∏

i=1

[B̃(πi) + F̃(πi) + 1]

)
.

Fang et al. in [8] defined vacillating parking functions (for m = n), which are preference
lists in which cars check their preference, the spot behind their preference (if it exists), and
the spot ahead of their preference (if it exists) in this order and park in the first available
spot they encounter among those options (if possible). If any car is unable to park among
those parking spots, then the list of preferences is not a vacillating parking function. Let
VPFn denote the set of vacillating parking functions. A recursive formula for the number of
vacillating parking functions was given in [8, Theorem 2.1]. We extend this definition and
let VPFm,n denote the set of vacillating parking functions with m cars and n spots such that
1 ≤ m ≤ n. Setting k = ℓ = 1 in the formula of Theorem 2.15, we provide a generalization
to their result in the case where there are m cars and n spots, thereby establishing the
following.

Corollary 2.17. Let B̂ and F̂ denote the specialization of F and B (from Definition 2.8)
with k = ℓ = 1, respectively. Then the number of vacillating parking functions with m cars
and n spots such that 1 ≤ m ≤ n is given by

|VPFm,n| =
∑

π=π1π2···πn∈Sm,n

(
n∏

i=1

[B̂(πi) + F̂(πi) + 1]

)
.

3 Recursive formula

In this section, we provide a recursive formula for the number of (k, ℓ)-pullback (m,n)-
parking functions. To make our approach precise we begin by adapting the definition of
“contained parking functions” as first given in [5].

Definition 3.1. Let a ≤ b, and consider a street with a spot 0 added before spot 1. The
set of contained (k, ℓ)-pullback (a, b)-parking functions, denoted Ca,b(k, ℓ), is the subset of
(k, ℓ)-pullback (a, b)-parking functions such that the a cars all park between spots 1 through
b, and none of the cars back into spot 0 while attempting to park.
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In Definition 3.1, we use the word “contained”, because if one were to introduce one or
more available spots to the ends of the parking lot (before the first spot and after the bth
spot), the a cars would be “contained” only in spots 1, 2, . . . , b. We also use a and b here
instead of m and n because our contained pullback parking functions will focus only on a
subset of size a of the a ≤ m parked cars on a portion of the street of length b when there
are b ≤ n spots.

We illustrate the need for the set of contained parking functions via the following example.

Example 3.2. Consider the street of length n = 12, with m = 7 cars. Let k = 3 and ℓ = 2,
and consider the outcome π = 007103002654 ∈ S7,12.

We want to count the number of (3, 2)-pullback (7, 12)-parking functions with outcome π.
In order to do this, we consider the non-zero entries in π. For example, we need to consider
how many pullback parking functions will have cars 2, 6, 5, 4 parked in spots 9, 10, 11, 12 on
the street.

This will not be the same as counting all parking functions in the set PF4,4(3, 2) and
then simply adjusting the preferences. Consider the parking preference list (1, 4, 4, 1), which
is a pullback parking function whose outcome is σ = 1432. However, when we adjust the
preferences to be (9, 12, 12, 9) for cars 2, 4, 5, 6, we would arrive at the outcome 62054 in
spots 8 through 12.

This means that we need to consider a subset of the parking functions in PF4,4(3, 2), and
not necessarily the full set in order to solve our problem.

Our main result in enumerating (k, ℓ)-pullback (a, b)-parking functions will depend on the
number of contained (k, ℓ)-pullback (m,n)-parking functions. Thus we first give a formula
for |Ca,b(k, ℓ)|.

3.1 Contained parking functions

The goal is to count pullback parking functions with more spots than cars. However, one
of the difficulties in counting these recursively is that we need to know the lengths of the
longest sub-intervals (consisting of adjacent parking spots) on the street which contain the
cars. To this end we set the following notation.

Notation 3.3. Given a permutation π = π1π2 · · · πn ∈ Sm,n, we let S be the subset of [n]
of size m in which the cars parked. Namely, S = {u ∈ [n] : πu > 0}. We then partition S
into maximal subintervals consisting of consecutive entries and we denote these subintervals
by S1, S2, . . . , Sj. Moreover, for each 1 ≤ i ≤ j, let ti be the cardinality of the set Si. Then,
for each 1 ≤ i ≤ j, we define Ti ⊆ [m] of size ti, to be the set of cars parking in subinterval
Si. Namely, for each 1 ≤ i ≤ j, we let Ti = {πu : u ∈ Si}.

Example 3.4. Let n = 10,m = 6 and π = 0236001540 ∈ S6,10. Then S = {2, 3, 4, 7, 8, 9}
and its partition into maximal subintervals consisting of consecutive entries are S1 = {2, 3, 4},
and S2 = {7, 8, 9}. Now t1 = 3, t2 = 3 with T1 = {2, 3, 6} and T2 = {1, 4, 5}.

In what follows we will count the preferences of the cars in Ti so that they park in the
subinterval Si. These preferences will form a contained parking function in which the number

11
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of spots and cars are both equal to the length of the subinterval. We will show that, for a
subinterval Si, the number of such preferences is equal to |Cti,ti(k, ℓ)|.

To make this approach precise we introduce parking outcomes on a subinterval of the
street. We do this next.

Definition 3.5. Fix a subset T ⊆ [m] of size t, and let ST denote the set of permutations
π = π1π2 · · · πt of the set T . Define the following set of permutations

TT = {π0π1 · · · πt : π0 = 0 and π1π2 · · · πt ∈ ST},

which consists of all permutations in ST to which we append a zero at the start.

We remark that the placement of a zero at the start of the permutations 0π1π2 · · · πt ∈ TT ,
will ensure that from the set of contained pullback parking functions on a subinterval we
can construct all pullback parking functions with outcome π1π2 · · · πn ∈ ST .

In what follows, we specialize the results in Section 2 to contained pullback parking
functions on a subinterval.

Definition 3.6. Following Notation 3.3, we let S be an sub-interval of [n] with length t,
and T be the corresponding set of cars parked in the sub-interval S. Fix a permutation
π = π0π1π2 · · · πt ∈ TT and, for each 1 ≤ i ≤ t, let

� Right(πi) be the longest subsequence πi+1, πi+2, . . . , πi+x where πy < πi for all i+ 1 ≤
y ≤ i+ x ≤ t; and

� Left(πi) be the length of the longest consecutive subsequence, πy, πy+1, . . . , πi−1, such
that 0 < πz < πi for all 1 ≤ y ≤ z ≤ i− 1.

Then, as in Definition 2.8, let

� B(πi) be the number of preferences for car πi satisfying Case (1), and

� F(πi) be the number of preferences for car πi satisfying Case (2).

Corollary 3.7. If S, T , t, and π ∈ TT are as in Definition 3.6, then, for each 1 ≤ v ≤ t,
we have that B(πv) = min(Right(πv), k), and F(πv) = max(min(Left(πi)− k), ℓ), 0).

Proof. On each subinterval S of length t, we are parking the cars in T , which consists of t
cars. Thus, result is a special case of Lemma 2.11 and Lemma 2.12, where the number of
spots and cars are equal.

Corollary 3.8. If S, T , t, and π ∈ TT are as in Definition 3.6. For each 1 ≤ v ≤ t, let
Pref(πv) denote the set of preferences of car πv which cause car πv to park in spot v. Then

|Pref(πv)| = B(πv) + F(πv) + 1.

Proof. This follows from Corollary 3.7 and the definitions of B(πi) and F(πi). The addition
of 1 accounts for car i preferring and parking in spot i.

12
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In what follows we will use the previous results to count pullback parking functions.

Remark 3.9. We remark that the process for counting these parking functions is as follows:

1. Select a subset S ⊆ [n] of size m, consisting of the indices for the spots in which the
cars park.

2. Partition S into maximal subintervals consisting of consecutive entries and denote these
subintervals by S1, S2, . . . , Sj.

3. Let t1, t2, . . . , tj denote the length of the subintervals S1, S2, . . . , Sj, respectively.

4. Partition the set [m] into subsets T1, T2, . . . , Tj of sizes t1, t2, . . . , tj.

5. For each 1 ≤ v ≤ j, the cars in Tv will park in the subinterval Sv.

6. For each 1 ≤ v ≤ j, the set of permutations in TTv gives all possible parking outcomes
of the cars in Tv parking in the subinterval Sv.

Next we consider a single subinterval and count the number of contained parking functions
whose outcome is a permutation π ∈ TTv .

Lemma 3.10. Fix 1 ≤ v ≤ j, and let Sv, Tv, tv, and π = π0π1π2 · · · πtv ∈ TTv be as
in Remark 3.9. Let |O−1(π)| denote the number of contained (k, ℓ)-pullback (tv, tv)-parking
functions whose outcome is the permutation π. Then

|O−1(π)| =

(
tv∏
i=1

[B(πi) + F(πi) + 1]

)
.

Proof. This follows directly from Corollary 3.8 and taking the product over all 1 ≤ i ≤ tv.

Next we consider a single subinterval and count the number of contained parking functions
over all possible outcomes i.e., over all permutations π ∈ TTv .

Theorem 3.11. Fix 1 ≤ v ≤ j, and let Sv, Tv, tv, and π = π0π1π2 · · · πtv ∈ TTv be as
in Remark 3.9. Let |O−1(π)| denote the number of contained (k, ℓ)-pullback (tv, tv)-parking
functions whose outcome is the permutation π. Then the number of contained (k, ℓ)-pullback
(tv, tv)-parking functions is given by

|Ctv ,tv(k, ℓ)| =
∑

π∈TTv

|O−1(π)| =
∑

π∈TTv

(
tv∏
i=1

[B(πi) + F(πi) + 1]

)
.

Proof. This follows from Lemma 3.10 by taking a sum over all possible parking outcomes in
the set TTv .

In the following result, the specialization of ℓ = n−1, means the result holds for k-Naples
(m,n)-parking functions.

13



Elder et al./ American Journal of Combinatorics 4 (2025) 1–22

Corollary 3.12. Fix 1 ≤ v ≤ j, and let Sv, Tv, tv, and π = π0π1π2 · · · πtv ∈ TTv be as in
Remark 3.9. Let |O−1(π)| denote the number of contained (k, n− 1)-pullback (tv, tv)-parking
functions whose outcome is the permutation π. That is, the number of contained k-Naples
(tv, tv)-parking functions. Then the number of contained contained k-Naples (tv, tv)-parking
functions is given by

|Ctv ,tv(k, n− 1)| =
∑

π∈TTv

|O−1(π)| =
∑

π∈TTv

(
tv∏
i=1

[B(πi) + F(πi) + 1]

)
.

3.2 Recursions

In this section we give a recursion for (k, ℓ)-pullback (m,n)-parking functions. Throughout
whenever a > b, |PFa,b| = 0 as there are more cars than spots. We begin with the following
definition which plays a key role in our proofs.

Definition 3.13. The popular region is the longest contiguous set of cars parked immediately
to one side of spot i. We let R denote the number of cars parked in the popular region. The
specific side of spot i which contains the popular region is noted whenever it is used.

We now give a recursive formula for the number of pullback (m,n)-parking functions.

Theorem 3.14. Let m and n be positive integers with m ≤ n, and fix 0 ≤ k ≤ n − 1 and
0 ≤ ℓ ≤ n− 1. The number of (k, ℓ)-pullback (m,n)-parking functions satisfies the following
recursive formula

|PFm,n(k, ℓ)| =
n∑

i=1

[
X(i) + Y (i) +

m−1∑
x=0

(
Z(i, x) +

n−i−1∑
R=1

V (i, x, R) +
i−2∑

R=k+1

W (i, x, R)

)]
,

where
X(i) =

(
m−1
n−i

)
|PFm−1−n+i,i−1(k, ℓ)||Cn−i,n−i(k, ℓ)|min(k, n− i),

Y (i) =
(
m−1
i−1

)
|PFi−1,i−1(k, ℓ)||Cm−i,n−i(k, ℓ)|min(i− 1, ℓ),

Z(i, x) =
(
m−1
x

)
|PFx,i−1(k, ℓ)||Cm−1−x,n−i(k, ℓ)|,

V (i, x, R) =
(
m−1
x

)
|PFx,i−1(k, ℓ)|

(
m−1−x

R

)
|CR,R(k, ℓ)||Cm−1−x−R,n−R−i−1(k, ℓ)|min(R, k), and

W (i, x, R) =
(
m−1
x

)
|PFx,i−R−2(k, ℓ)|

(
m−1−x

R

)
|CR,R(k, ℓ)||Cm−1−x−R,n−i(k, ℓ)|min(R− k, ℓ).

Proof. Let α = (a1, a2, . . . , am) ∈ PFm,n(k, ℓ). We count the number of (k, ℓ)-pullback
(m,n)-parking functions by partitioning the set based on the parking location of the final
car relative to its preference. This gives rise to the following three cases:

Case 1: Car m prefers spot i and parks there (am = i),

Case 2: Car m prefers some spot to the right of spot i and backs into spot i (am > i), or

Case 3: Car m prefers a spot to the left of spot i and it pulls forward into spot i (am < i).
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i− 1 spaces n− i spaces

x cars m− 1− x cars1 i n

Figure 3: In the figure, spot i is left open and the region to the left of spot i consists of spots
1 through i− 1, and there are x cars parked in those spots. Hence, x ≤ i− 1 and x ≤ m− 1.
The region to the right of spot i consists of the spots i + 1 through n, and m − 1 − x cars
are parked in that region. Hence, m− 1− x ≤ n− i.

We now count the preferences in each of these cases independently.

Case 1: In this case, carm prefers spot i and parks there. We illustrate this case in Figure 3.
Suppose that x cars park to the left of spot i such that 0 ≤ x ≤ m− 1. There are

(
m−1
x

)
way to select those cars among m− 1 cars. We then park those cars in the i− 1 spots to the
left of spot i, which can be done |PFx,i−1(k, ℓ)| ways. Note that this returns 0 if x > i− 1.

We now consider the cars parked to the right of spot i. The cars parking in this region
are uniquely determined, as the complement of the set of cars parking in the spots 1 through
i − 1. Because we are parking these cars to the right of spot i, in order to leave spot i
vacant, we must only include parking functions which do not back into spot i using the
pullback parking rule. This is precisely the set of contained pullback parking functions,
Cm−1−x,n−i(k, ℓ). Hence, we have a factor of |Cm−1−x,n−i(k, ℓ)| and this value is zero whenever
m− 1− x > n− i.

The only car left to park is car m. Given the assumption of this case, car m prefers spot
i, and parks there, accounting for a factor of 1 in the count. To conclude we must sum over
all possible values of x and i. Hence, the total count contributed by Case 1 is given by

n∑
i=1

m−1∑
x=0

Z(i, x) :=
n∑

i=1

m−1∑
x=0

(
m− 1

x

)
· |PFx,i−1(k, ℓ)| · |Cm−1−x,n−i(k, ℓ)|. (3.1)

Case 2: In this case, car m prefers some spot to the right of spot i and backs into spot i.
In this case we set the popular region, as defined in Definition 3.13, to be located to the

right of spot i. Recall that we let R denote the length of the popular region.
We now consider the following two subcases:

Subcase 2a: The popular region extends all the way to the end of the street (R = n− i).

Subcase 2b: The popular region does not extend to the end of the street (R < n− i).

We now count the preferences for the cars in each of these subcases.
Subcase 2a: The popular region extends all the way to the end of the street, so R = n− i.
We illustrate this case in Figure 4.

Given the constraints in Case 2a, we first choose the n − i cars to park to the right of
spot i. This can be done in

(
m−1
n−i

)
ways. The complementary set consisting of m−1− (n− i)

cars are then parked to the left of spot i, which can park in |PFm−1−n+i,i−1(k, ℓ)| ways.
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i− 1 spaces R = n− i spaces

m− 1− (n− i) cars R = n− i cars1 i n

Figure 4: In the figure, spot i is vacant. The region to the right of spot i consists of the
spots numbered i+1 through n. In this case, the popular region is highlighted in red. Here,
the popular region satisfies R = n− i. The region to the left of spot i consists of the spots
numbered 1 through i− 1, and the remaining m− 1− (n− i) cars are parked there.

For the cars parking in spots i + 1 through n, we park the R = n − i cars using the
contained pullback parking function in order to not back up into spot i. This can be done
in |CR,R(k, ℓ)| = |Cn−i,n−i(k, ℓ)| many ways.

Now, we consider the number of preferences that car m can have, which allow it to park
in spot i. In some cases, this will be k, as car m can prefer at most k spots ahead of spot i
and still be able to back into spot i; however, we must account for the case when i+ k > n.
In that case, the number of possible preferences for car m is simply all available spots in the
popular region, namely R = n− i. Thus, the number of preferences for car m is counted by
min(k, n− i).

To conclude, we must sum over all possible values of i such that 1 ≤ i ≤ n. Hence, the
total count contributed by Subcase 2a is given by

n∑
i=1

X(i) :=
n∑

i=1

(
m− 1

n− i

)
|PFm−1−n+i,i−1(k, ℓ)| · |Cn−i,n−i(k, ℓ)| ·min(k, n− i). (3.2)

Subcase 2b: Not all of the spaces to the right of spot i are occupied, so the popular region
does not extend to the end of the street (R < n− i). We illustrate this case in Figure 5.

i− 1 spaces R spaces
n−R− i− 1 spaces

x cars R cars
m− 1− x−R cars

1 i n

Figure 5: In the figure, spot i is left vacant. The region to the left of spot i consists of the
spots numbered 1 through i− 1, and there are x cars parked in those spots, with x ≤ i− 1.
The region to the immediate right of spot i consists of spots i+1 through i+R. The popular
region is highlighted in red and contains exactly R cars. Moreover, the spot immediately
to the right of the popular region is vacant. The final region, to the far right of the street,
consists of spots i+R+ 2 through n, and the the remaining m− 1− x−R cars park there
such that m− 1− x−R ≤ n−R− i− 1.

First, consider the section of the street to the left of spot i. Let x be the number of cars
parked in this section of the street, where 0 ≤ x ≤ m−1. There are

(
m−1
x

)
ways to select the
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cars to park in those spots. They are parked according to the pullback parking rule with x
cars and i− 1 spaces, contributing the |PFx,i−1(k, ℓ)| to the count. We then must sum over
all possible values of 0 ≤ x ≤ i− 1.

Now consider all cars parked to the right of spot i. There are n − i total spots in this
region, and m− 1− x cars will park there. In this case, the popular region does not extend
all the way to the end of the street, hence spot i + R + 1 must remain open. Since there
are n − i total spots to the right of spot i and car m backs into spot i, it must be that
1 ≤ R ≤ n− i− 1. First we select the cars to park in the popular region, which can be done
in
(
m−1−x

R

)
ways. Next, spot i must remain empty, thus there are |CR,R(k, ℓ)| ways to park

the cars parks in the popular region. Now consider the remaining m− 1−x−R cars, which
park in spots i+R+2 through n. Since spot i+R+1 must remain open, we use again use
the set of contained pullback parking functions, which contributes |Cm−1−x−R,n−R−i−1(k, ℓ)|
to the count.

Now we must account for all the possible preferences for car m. Since car m backs into
spot i and can only back up a maximum of k spots, or, if R < k, car m can prefer any spot
of the popular region. Hence, the preferences of car m can be i + 1, i + 2, . . . i +min(R, k),
which implies that there are min(R, k) possible preferences for car m so that it backs into
spot i. To conclude, we must sum over all of the possible values of 1 ≤ R ≤ n− i− 1.

Finally, we sum over all possible 1 ≤ i ≤ n. Note that i cannot be equal to n in this
case, as we must be able to back into i, but when i = n, this case returns zero, so it is left
in the formula in order to simplify the final equation.

Thus, the total count contributed by Subcase 2b is given by

n∑
i=1

m−1∑
x=0

n−i−1∑
R=1

V (i, x, R), (3.3)

where V (i, x, R) =
(
m−1
x

)
|PFx,i−1(k, ℓ)|

(
m−1−x

R

)
|CR,R(k, ℓ)||Cm−1−x−R,n−R−i−1(k, ℓ)|min(R, k).

Case 3: In this case, car m prefers a spot to the left of spot i and pulls forward into spot i.
The popular region, as defined above in Definition 3.13, is located to the left of spot i.
We now consider the following two subcases:

Subcase 3a: Every spot to the left of spot i is occupied, so the popular region extends from
spot 1 to spot i− 1, hence R = i− 1.

Subcase 3b: The popular region does not extend to spot 1, hence R ≤ i− 2. In this case,
car m pulls forward into spot i, hence R ≥ k + 1. Thus k + 1 ≤ R ≤ i− 2.

We now count the preferences in each of these subcases.
Subcase 3a: Every spot to the left of spot i is occupied, so the popular region extends from
spot 1 to spot R = i− 1. We illustrate this case in Figure 6.

Since in this case, all of the spots from 1 to i − 1 are occupied, we can choose i − 1
cars to park in the popular region and use a pullback parking function to park them. This
contributes

(
m−1
i−1

)
|PFi−1,i−1(k, ℓ)| to the count.
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R = i− 1 spaces n− i spaces

R = i− 1 cars m− 1− (i− 1) cars1 i n

Figure 6: In the figure, spot i is vacant. The popular region consists of spots 1 through i−1,
hence R = i−1, and we highlight the region in red. The region to the right of spot i consists
of spots i+ 1 through n, which will have the remaining m− 1− (i− 1) = m− i cars parked
in that region.

We now park the cars to the right of spot i. Because we are parking these cars to the
right of spot i, we must again use the set of contained pullback parking functions, this count
is given by |Cm−i,n−i(k, ℓ)|.

Next, we must consider the possible preferences for car m. First, since all spots 1 to
i− 1 are occupied, the parameter k does not affect the preferences for car m. Furthermore,
since car m pulls forward into spot i, car m can only prefer up to ℓ spaces behind spot
i. However, we must consider that if R < ℓ, it can only prefer the spots in the popular
region. Thus, the number of preferences for car m to pull forward into spot i is given by
min(R, ℓ) = min(i− 1, ℓ).

We then sum over all possible values of i allowing for the popular region to exist. Hence,
2 ≤ i ≤ n. However, as before, for sake of simplicity, we index the sum over 1 ≤ i ≤ n, as
the term i = 1 will contribute zero to the sum.

Thus, Subcase 3a contributes the following to the total count

n∑
i=1

Y (i) :=
n∑

i=1

(
m− 1

i− 1

)
· |PFi−1,i−1(k, ℓ)| · |Cm−i,n−i(k, ℓ)| ·min(i− 1, ℓ). (3.4)

Subcase 3b: The popular region does not extend to spot 1, Hence R ≤ i − 2. Moreover,
as car m pulls forward into spot i, we have that k + 1 ≤ R. Hence k + 1 ≤ R ≤ i − 2. We
illustrate this case in Figure 7.

spaces
i−R− 2

x cars

R spaces

R cars

n− i spaces

m− 1− x−R cars1 i n

Figure 7: In the figure, spot i is vacant. The popular region consists of R ≤ i− 2 cars and
is highlighted in red. Note spot i − R − 1 is empty. The region to the far left of the street
consists of spots 1 through i − R − 2, in which x cars park, and 0 ≤ x ≤ i − R − 2. The
final region to the right of spot i consists of spots i + 1 through n, in which the remaining
m− 1− x−R cars park. Note m− 1− x−R ≤ n− i.

We start by parking the cars to the far left of the street. From m − 1 cars we choose x
cars to park, where 0 ≤ x ≤ m− 1. This can be done in

(
m−1
x

)
ways. The number of spots
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in this region is i−R− 2, as we have to subtract the size of the popular region from i, and
spot i−R− 1 must remain open. We then park the x cars in the i−R− 2 spots, which can
be done in |PFx,i−R−2(k, ℓ)| ways.

Now we park the cars in the popular region. From the remaining m−1−x cars we select
R cars to park in the popular region. This can be done in

(
m−1−x

R

)
ways. Then we park

these cars using a contained pullback parking function in order to leave spot i−R− 1 open.
This contributes |CR,R(k, ℓ)| to the count.

We now park all of the cars to the right of spot i. There is no choice of cars here since
we must use the remaining cars that have yet to be parked. Because we are parking to the
right of spot i, we use the contained pullback parking function in order to prevent any cars
from backing into spot i. This contributes |Cm−1−x−R,n−i(k, ℓ)| to the count.

Next, we must consider the number of possible preferences for car m. In this case, the
number of preferences for car m is given by min(R−k, ℓ) because, if R < ℓ, car m can either
prefer any spot from i−R+ k to spot i− 1, or if R ≥ ℓ, it can prefer ℓ spaces before spot i
in order to pull forward up to ℓ spaces into i.

We must sum over 3 ≤ i ≤ n, however as before, we take the sum over i starting at 1,
since those terms will contribute zero to the sum. We also must sum over 0 ≤ x ≤ m − 1,
and over k + 1 ≤ R ≤ i− 2. Thus, the total count contributed by Subcase 3b is given by

n∑
i=1

m−1∑
x=0

i−2∑
R=k+1

W (i, x, R), (3.5)

whereW (i, x, R) =
(
m−1
x

)
|PFx,i−R−2(k, ℓ)|·

(
m−1−x

R

)
|CR,R(k, ℓ)|·|Cm−1−x−R,n−i(k, ℓ)|·min(R−

k, ℓ), and if a > b, then |PFa,b| = 0.
The result follows from adding the counts from Equations (3.1), (3.2), (3.3), (3.4),

and (3.5).

We can now specify ℓ = n − 1, in which case PFm,n(k, n − 1) = PFm,n(k), as the
parameter ℓ = n− 1 does not restrict the movement forward. With this in mind, we arrive
at the following alternate formula for the number of k-Naples (m,n)-parking functions.

Corollary 3.15. Let m ≤ n be positive integers, and fix 0 ≤ k ≤ n − 1. Then the number
of k-Naples (m,n)-parking functions satisfies the recurrence

|PFm,n(k)| =
n∑

i=1

[
X(i) + Y (i) +

m−1∑
x=0

(
Z(i, x) +

n−i−1∑
R=1

V (i, x, R) +
i−2∑

R=k+1

W (i, x, R)

)]
,

where
X(i) =

(
m−1
n−i

)
|PFm−1−n+i,i−1(k)||Cn−i,n−i(k, n− 1)|min(k, n− i),

Y (i) =
(
m−1
i−1

)
|PFi−1(k)||Cm−i,n−i(k, n− 1)|(i− 1),

Z(i, x) =
(
m−1
x

)
|PFx,i−1(k)||Cm−1−x,n−i(k, n− 1)|,

V (i, x, R) =
(
m−1
x

)
|PFx,i−1|

(
m−1−x

R

)
|CR,R(k, n− 1)||Cm−1−x−R,n−R−i−1(k, n− 1)|min(R, k),

W (i, x, R) =
(
m−1
x

)
|PFx,i−R−2(k)|

(
m−1−x

R

)
|CR,R(k, n− 1)||Cm−1−x−R,n−i(k, n− 1)|(R− k).
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By further specifying that ℓ = n − 1 and m = n, Theorem 3.14 gives an alternate
formula for the number of k-Naples parking functions of length n, which was first given by
Christensen et al. [5]. We conclude by stating their theorem.

Theorem 3.16. [5, Theorem 1.1] If k, n ∈ N with 0 ≤ k ≤ n − 1, then the number of
k-Naples parking functions of length n+ 1 is counted recursively by

|PFn+1(k)| =
n∑

i=0

(
n

i

)
min((i+ 1) + k, n+ 1)|PFi(k)|(n− i+ 1)n−i−1.

4 Future directions

We conclude with the following directions for future work.

1. Our definition of (k, ℓ)-pullback (m,n)-parking functions allows a car whose preference
is occupied to back up to k spots, proceed forward up to ℓ spots from their preference,
and park in the first spot it finds available. Both the parameters k and ℓ are set globally.
One alternative is for each i ∈ [m] to have its own nonnegative integer parameters ki
and ℓi, which encode how many spots car i can back up to in its attempt to park, and
if all of those spots are taken, then it can check ℓi spots after its preference, parking
in the first available spot it encounters among those ℓi spots. In this way, whenever
ki = k and ℓi = ℓ for all i ∈ [m], then one recovers the definition of for (k, ℓ)-pullback
(m,n)-parking functions. Also by setting ki = 0 for all i ∈ [m], this would be precisely
the definition of interval parking function, which have been studied by Aguilar et al. [2]
and Colaric et al. [6].

2. Subsets of parking functions has led to many interesting enumerative results. For
example, it is well-known weakly increasing parking functions are Catalan objects.
Reutercrona, Wang, andWhidden [12] established that the number of weakly increasing
unit interval parking functions of length n is given by 2n−1. Fang, Harris, Kamau, and
Wang [8, Corollary 3.3] established that the number of weakly increasing vacillating
parking functions of length n is given by the numerator of the nth convergent of the
continued fraction of

√
2. It remains an open problem to give enumerations for the

weakly increasing subset of (k, ℓ)-pullback (m,n)-parking functions.

3. We used the technique of counting through permutations to count the number of
contained pullback parking functions. We were unable to find closed formulas for these
counts. Christensen et al. [5, Lemma 3.4] showed that the cardinality of contained
k-Naples parking functions of length n is (n + 1)n−1. It remains an open problem
to determine these closed formulas for other specializations of (k, ℓ)-pullback (m,n)-
parking functions.

4. There are many generalizations of parking functions, such as parking functions with
different sized cars which are called parking sequences [1] and parking assortments [4, 9].
One could recreate our study of pullback parking functions with these generalizations
of parking functions.
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