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Abstract

We address the problem of ordering trees with the same degree sequence by their
spectral radii. To achieve that, we consider 2-switch transformations which preserve
the degree sequence and establish when the index decreases. Our main contribution
is to determine a total ordering of a particular family by their indices according to a
given parameter related to sizes in the tree.

1 Introduction

Giving a graphical degree sequence, a general, natural, and well-studied problem is to
determine, with respect to a given parameter, the extremal members in the family of graphs
satisfying this degree sequence.

The main purpose of this note is to address the problem of finding extremal members
in families of graphs having the same degree sequence, with respect to the spectral radius
(or index), which is the largest eigenvalue of the adjacency matrix. We remark that this
problem has been studied in great generality in the celebrated paper by T. Biyikoğlu and J.
Leydold [5], where the authors show that, in the maximum element, the degree sequence is
non-increasing with respect to an ordering of the vertices induced by breadth-first search that
is consistent with the eigenvector associated with the index. In [1], the authors determined
the tree having maximum spectral radius among all caterpillar with a fixed degree sequence.

As a way to illustrate how this class of problems may be approached, we study how the
spectral radius varies, upon transformations that preserve the degree, in the family F(n) of
trees given in Figure 1. The technique we use is a powerful algorithmic tool that allows one
to compare the indices of two trees without computing them. Our main result is a total
ordering in this family and, as a consequence, we obtain the extremal members.

We believe that this result is remarkable, since it is quite unusual to obtain a total order
by any graph parameter. Spectral parameters have been used to classify many families,
however it is rare that a total order is obtained. As examples, we refer to the papers
[2, 3, 6, 9, 12, 13, 14], where the ordering of graphs by the index is studied.
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Figure 1: The family of trees F(n).

The remaining of the paper is as follows. In order to explain that the family we study
is not arbitrary, we devote the rest of this introduction to justify our choice. In Section
2, we define the family F(n) and the transformations we perform. Moreover, we explain
our powerful technique to obtain the order, that is based on an algorithmic tool, allowing
to compare indices of trees without computing them. In Section 3 we obtain necessary
analytical properties of some recurrence relations that appear in our comparison method. In
Section 4 we show how the spectral radius varies upon the transformations. In Section 5, we
use the results to obtain a total ordering in F(n).

1.1 Motivation for choosing the family

We start by introducing some notation from [11] which is specially useful to represent
the trees in the family F(n). In that paper, it was proven that the number of Laplacian
eigenvalues less than the average degree 2− 2

n
of a tree having n vertices is at least ⌈n

2
⌉. We

remark that pendant paths of length 2 play an important role there and serve as a motivation
for our choice.

Let T be a tree with n vertices, and let u be a vertex of degree at least ℓ of T having
ℓ ≥ 1 pendant paths attached at u. We denote the sum of pendant paths attached at u
by P (u) = Pq1 ⊕ · · · ⊕ Pqℓ , as illustrated in Figure 2. The number of edges in each path
is denoted by ♯Pq = q. A subgraph obtained by a vertex u attached to r ≥ 1 paths of

u
P2

P2

P4

P5

P1

P3
P3 ∗ S4

4P2

v

(Pq, Sr) representation

u

u

Figure 2: Vertex u with P (u) = P1 ⊕ 2P2 ⊕ P4 ⊕ P5 (left) and (Pq, Sr) representation of a
generalized pendant path (right).

length 2 is called a sun with r rays and denoted by Sr. To simplify the representation, we
use the concatenation symbol and write Pq ∗ Sr. To further simplify the graphic part of the
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representation, we will use a black square ■ to represent a pendant sun Sr attached to a
vertex, and a single edge to represent the entire path Pq, omitting the r pendant P2’s and
the q vertices. We will refer to this as the (Pq, Sr) representation of this generalized pendant
path Pq ∗Sr, as shown in Figure 2 (right). We can consider q = 0 for paths Pq of length 0, as
well as r = 0 for no pendant Sr. However, we do not allow both r = q = 0 simultaneously.
We say a vertex u is a starlike vertex if it has degree ≥ 3 and has at least two generalized
pendant paths attached to it. Using this notation, we can write any tree T having a single
starlike vertex u as T = u+ Pq1 ∗ Sr1 ⊕ · · · ⊕ Pqℓ ∗ Srℓ where ℓ ≥ 1.

In particular, any member of F(n), as in the Figure 1, has a single starlike vertex u and
is represented as

T = u+ Ph ∗ S0 ⊕ Pq1 ∗ Sr1 ⊕ Pq2 ∗ Sr2 ,

for h, q1, q2 ≥ 2.
Our choice of the family is related to the fact that we would like to study the spectral

radius ordering on trees having a single starlike vertex. We notice that the general family of
trees H with just one starlike vertex in this notation is given by,

H := {T |T = u+ Ph ∗ Sr0 ⊕ Pq1 ∗ Sr1 ⊕ Pq2 ∗ Sr2 , q0, q1, q2 ≥ 0, r0, r1, r2 ≥ 0}.

In this generality, our tool becomes too involved and, hence, in order to simplify the
computations and to obtain symmetry, we have chosen to study a special case of this family
H, where we replace Sr0 by S0 (no pendant P2’s on the path Ph).

We observe that the results of this note may be seen as a generalization of the total
ordering of starlike trees obtained in [13], which are tree with a single vertex of degree ≥ 3.
In the above notation starlike trees are written as u+ P1 ∗ S0 ⊕ · · · ⊕ Pm ∗ S0, for m ≥ 3.

2 A family and our tool

In this section we define the family which we will determine a spectral radius ordering when
performing a degree preserving operation, as well as an algorithmic tool that we believe it
is powerful for this class of problems.

2.1 Our Family

By definition, the family F(n) contains all trees depicted in Figure 1 fulfilling the following
constraints.

1) q1, q2, h ≥ 2;

2) r1, r2 ≥ 2 and r1 < r2;

Notice that, in this case, the number of vertices is n = |T | = 1+h+ q1+ q2+2(r1+ r2) ≥
7 + 2(r1 + r2) ≥ 17.

We are interested in ordering by the index (spectral radius) the trees with a fixed degree
sequence, in F(n). As a particular case, we obtain the extreme members of the family, that
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is, the trees in F(n) having largest and minimum spectral radius. The degree sequence of
T ∈ F(n) is given by

d := [r1 + 1, r2 + 1, 3, 2n−(r1+r2)−4, 1r1+r2+1].

In order to keep the degree sequence we fix r2 > r1 ≥ 2. In this way each element in F(n),
with n vertices and degree sequence d is uniquely determined by the 3-tuple [h, q1, q2] that
is,

F(n) := {T = [h, q1, q2] | h+ q1 + q2 = n− 1− 2(r1 + r2)}.
Now we consider two types of transformations on T = [h, q1, q2] ∈ F(n). Later, in

Section 4, we determine how to order, by their spectral radii, the trees obtained by these
operations. These transformations are within the realm of 2-switch transformations. For
a graph G = (V,E) having four distinct vertices a, b, c, d ∈ V such that ab, cd ∈ E and
ac, bd /∈ E, the removal of the edges ab and cd from G and the addition of ac and bd to G is
referred to as a 2-switch in G. This is a well studied classical operation (see, for example
[4, 7]). It is straightforward to check that 2-switch operations preserve the degree sequence.

u

r1P2

r2P2

q2
q1

h

u1

w1

w2

u2

s

t

u

r1P2
r2P2

q2
q′1 = h− s+ t

h′ = h− t+ s

w1 u2

t

s

T

T̃

u1

w2

Figure 3: The 2-switch of type I.

Type I. We switch the vertices between the central path and the right (or the left) branch
of T obtaining a new tree T (see Figure 3). More precisely, we have a new member
of F(n), where the parameters are changed by q′1 = h − s + t (the closest to r1 P2)
and h′ = q1 − t + s (the new central path after some relabeling). Let us call that a
(s, t)-2-switch of type I (see Figure 3). In order to do the 2-switch, we disconnect the
edges [u1, u2] and [w1, w2] and reconnect [u1, w2] and [w1, u2].
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Type II. We switch the vertices between the right and the left branches of T obtaining a new
tree T ′; Notice that this transformation is indeed a 2-switch preserving the degree
sequence (d := [r1 + 1, r2 + 1, 3, 2n−(r1+r2)−4, 1r1+r2+1]). More precisely, we have a new
member of F(n), where the parameters are changed by q′1 = q2 + t − s (the closest to
r1 P2) and q′2 = q1 − t + s (the closest to r1 P2). Let us call that a (s, t)-2-switch of
type II. In order to do the 2-switch, we disconnect the edges [u1, u2] and [v1, v2] and
reconnect [u1, v2] and [v1, u2].

u

r1P2

r2P2

q2 q1

h

u1v1v2 u2

s t

u

r1P2
r2P2

q′1 = q2 + t− s q′2 = q1 − t+ s

h

u1v1 v2u2

t s

T

T ′

Figure 4: The 2-switch of type II.

We can always assume that λ = ρ(T ) >
√
r2 + 2 for all T in F(n) because the sun Sr2+1,

whose spectral radius is
√
r2 + 2, is a proper subgraph of T , since q2 ≥ 2. But in fact, we

need a larger lower bound for λ = ρ(T ) for our results.
Let Tj := [2, 2, ..., 2︸ ︷︷ ︸

r2 times

, j] be the starlike tree composed by r2 legs of P2 and a path of length

j, with j ≥ 3 as Figure 5 illustrates.

Theorem 2.1. Let T ∈ F(n). If j ≥ 3, then

ρ(T ) > ρ(Tj).

This result may be proven by our comparison method that will be explained next, but
there is a simpler proof, for which we need the following definitions and known result of
Lemma 2.2.

5



Oliveira et al./ American Journal of Combinatorics 1 (2022) 1–19

r2P2

Pj

u

Figure 5: The graph Tj.

An internal path in a graph G, denoted by v1v2, . . . vr−1vr, is a path beginning at v1 and
ending at vr, where v1 and vr both have degree bigger than two, while all other vertices have
degree two. The vertices v1 and vr are not necessarily distinct. We denote by Cn, the cycle
on n vertices and by Wn the tree with n vertices where two vertices have degree three and
the distance between them is n − 5. The following result appears in the work by Hoffman
and Smith [8].

Lemma 2.2. Let G be a graph with n vertices, G ̸= Cn,Wn. Let G
′ be the graph with n+ 1

vertices obtained from G by inserting a new vertex of degree two in an edge e. Then

(a) if e lies on an internal path then λ(G′) < λ(G);

(b) if e does not lie on an internal path then λ(G′) > λ(G).

Proof. (Theorem 2.1) Let T = [h, q1, q2] ∈ F(n) and 3 ≤ j.
Let H ′

1 be the tree obtained by adding an edge in the internal path starting from u to
the vertex r1P2. We notice that T ̸= Wn, as it has a vertex u of degree r2 + 1 > 3, and
hence, by Lemma 2.2, ρ(H ′

1) < ρ(T ) . We now remove the pendant vertex of the path Ph in
T , obtaining a tree H1, a proper subtree of H ′

1. If follows that ρ(H1) < ρ(T ). We apply this
process successively h times, obtaining a tree Hh composed by the starlikes r2P2 and r1P2

linked in their centers by a path of length q2 + h+ q1 + 1 such that ρ(Hh) < ρ(T ).
Now, if 3 ≤ j ≤ q2 + h + q1 + 1, we see that Tj is a proper subtree of Hh and therefore,

ρ(Tj) < ρ(Hh) < ρ(T ).
For j > q2 + h + q1 + 1, we keep adding edges in the internal path starting at r2P2 and

ending at r1P2 until the length of the path is at least j, obtaining a tree Hj. This operation,
according the Lemma 2.2, decreases the spectral radius. As Tj is a proper subtree of Hj, it
follows that ρ(Tj) < ρ(Hj) < ρ(T ).

2.2 Our tool

We would like to recall the algorithm Diagonalize(T , α). For a tree T and a real number α
this algorithm outputs a sequence (dv)v∈V (T ).

Algorithm Diagonalize(T , α)

1. List the vertices of T in postorder as v1, . . . , vn.

2. For each i = 1, . . . , n set dvi ← α.
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3. For each i = 1, . . . , n:

4. If vi has a child vj such that dvj = 0,
then
set dvi ← −1

2
and dvj ← 2.

Further, if vi has a parent vp, remove the edge vpvi from T .

5. Otherwise, set dvi ← dvi −
∑
d−1
vj
, summing over all children vj of vi.

The above algorithm of Jacobs and Trevisan [10] can be used to estimate eigenvalues of
a given tree. It finds a diagonal matrix D that is congruent to the matrix A(T ) +αI, where
A(T ) is the adjacency matrix of T and α is a real number. Its nice feature is that it can
be easily executed manually directly on the drawing of a tree. The authors proved that the
following result holds.

Theorem 2.3. For a tree T , let (dv)v∈V (T ) be the values produced by Diagonalize(T,−α).
Then the diagonal matrix D = diag(dv)v∈V (T ) is congruent to A(T ) + αI, hence the number
of ( positive | negative | zero ) entries in (dv)v∈V (T ) is equal to the number of eigenvalues of
A(T ) that are ( greater than α | smaller than α | equal to α ).

u

r1P2

r2P2

q2 q1

h

a1

a1

a1

a2
a2

a2

a2

a2

a1

a1

a1

a2

ah
b1b2bq1cq2c2c1

Figure 6: The algorithm Diagonalize(T , −λ) applied to a generic member of trees F(n).

Let (dv)v∈V be the sequence obtained by executing Diagonalize (T,−λ), when T ∈ F(n)
(see Figure 6) and u is the root of the tree. Since we are going to use this algorithm in different
trees, it is useful to adopt a new notation, recording the tree we are using and the vertex
where we are applying, which is

fT (v) := dv, ∀v ∈ V (T ).

Taking λ = ρ(T ), the vertices labeled with the values of the numeric sequences generated by
the application of the algorithm Diagonalize (T,−λ) appear in Figure 6.

By the application of the algorithm, we know that aj, bj, cj < 0 for all indices appearing
in the picture and

fT (u) = −λ−
1

ah
− 1

bq1
− 1

cq2
= 0, (2.1)

otherwise, if some previous vertex produces zero then, the step (4) of the algorithm will
produce a positive value which is not possible because λ is the index of T .
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Furthermore, we have

a1 = −λ, b1 = −λ−
r1
a2
, and c1 = −λ−

r2
a2
.

From these vertices towards the root u we obtain three sequences aj, bj and cj, obeying the
same relation, that is, aj+1 = −λ− 1

aj
, bj+1 = −λ− 1

bj
and cj+1 = −λ− 1

cj
.

Now suppose that we have a new tree T̃ with new parameters [h′, q′1, q
′
2] (same number

of vertices and with the same r1 and r2). We now execute Diagonalize(T̃ ,−λ).

Since the tree T̃ has the same properties of T , when ρ(T ) > ρ(T̃ ), we obtain similar
sequences and a similar formula at the root ũ of the tree T̃ . More precisely, the execution
of Diagonalize(T̃ ,−λ) produces the same sequences, aj, bj, cj and

fT̃ (ũ) = −λ−
1

ah′
− 1

bq′1
− 1

cq′2
(2.2)

From Theorem 2.3 it follows that ρ(T ) > ρ(T̃ ) if and only if −λ− 1
ah′
− 1

bq′1
− 1

cq′2
< 0 and all

aj, bj, cj < 0.
We will see that in order to determine the sign of Equation (2.2), we need to deal

in great detail with the recurrences appearing when the algorithm Diagonalize(T̃ ,−λ) is
implemented. For that we will determine some analytical properties of the recurrences aj, bj
and cj.

3 Analytical properties of recurrence sequences

As we observed in the previous section, the only information needed is the sign of the numeric
sequences generated. All the recurrence relations are of the same kind, differing only by the
initial value. More precisely, they are of the form

zj+1 = φ(zj) where φ(t) = −λ− 1

t
(3.1)

for t ̸= 0 and λ = ρ(T ) > ρ(Tj) > 2. Hence it depends only on the analytical behavior of
the function φ(t).

In [3] this sequence was extensively studied and its behavior can be summarized by the
following result whose proof is a combination of the results found in [3].

Theorem 3.1. Let zj be the recurrence in formula (3.1), then

(a) φ(t) = t has two roots θ = −λ−
√
λ2−4

2
< −1 and θ−1, which are also fixed points of

φ(t) = t;

(b) θ(λ) is decreasing as a function of λ;

(c) zj = θ+ θ−1−θ
β(θ2)j+1

, where the constant β ∈ R is obtained when computing the given value
z1;
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(d) The sequence aj obtained from zj by taking a1 = −λ is given by aj = θ −
√
λ2−4

(θ2)j−1
< 0,

for any j ≥ 1. In particular, aj is increasing and lim
j→∞

aj = θ.

We also need to understand the sequences bj and cj obtained from zj by considering
b1 = −λ− r1

a2
and c1 = −λ− r2

a2
, 2 ≤ r1 < r2, respectively.

We are going to study both at the same time by considering a parametric sequence

zj+1(r) = φ(zj(r)) (3.2)

with z1(r) := −λ− r
a2

for some r ≥ 2.
The main facts can be summarized in the following result.

Theorem 3.2. Let zj be the recurrence in formula (3.2), then

(a) zj(r) = θ + θ−1−θ
β(θ2)j+1

, where the constant β := β(r) ∈ R is given by

β :=
r − a2θ
a2θ − rθ2

;

(b) β(r) is a continuous function of r in (2,∞) \ r∗, where r∗ := a2
θ
. Moreover β(r) has a

single root in r∗ = a2θ and β(r) > 0, for r ∈ (r∗, r
∗)

(c) The sequence zj(r) < 0, for j ≥ 1, is decreasing and lim
j→∞

zj = θ.

Proof. (a) Using Theorem 3.1 (c) and the fact that −λ = θ + θ−1 and θ − θ−1 = −
√
λ2 − 4

we obtain

z1 = −λ−
r

a2
= θ + θ−1 − r

a2
and z1 = θ +

θ−1 − θ
β(θ2)1 + 1

,

producing

β := β(r) =
θ−1 r

a2
− 1

1− θ r
a2

=
rθ−1 − a2
a2 − rθ

=
r − a2θ
a2θ − rθ2

.

(b) We notice that β(r) is a rational function, hence continuous, apart from the roots of the
denominator. Thus, the discontinuity occurs at r∗ := a2

θ
. Also, β(r) has only one possible

root in r∗ = a2θ.
Additionally, lim

r→r+∗

β(r) = +∞. To see that we just take r := r∗ + δ for δ > 0, then

β(r∗ + δ) =
r∗ + δ − a2θ

a2θ − (r∗ + δ)θ2
=

δ + (r∗ − a2θ)
(a2θ − r∗θ2)− δθ2

=
δ + (r∗ − a2θ)
−δθ2

δ→0+→ +∞

because r∗ − a2θ = a2
θ
− a2θ = a2(

1−θ2

θ
) < 0.

As r∗ − r∗ = a2(θ − θ−1) = a2(−
√
λ2 − 4) > 0, we see that r∗ < r∗. Also, differentiating

with respect to r we conclude that β(r) is decreasing and take the value zero only for
r∗ := a2θ > r∗. Thus we conclude that β(r) > 0 for r ∈ (r∗, r

∗). Figure 7 illustrates a typical
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Figure 7: The behavior of β(r).

behavior of the function β(r).

(c) We recall that r∗ = a2θ, moreover, from Theorem 3.1 (d), we know that lim
j→∞

aj = θ

hence
r∗ = lim

j→∞
a2aj. (3.3)

By Theorem 2.1, we know that ρ(Tj) < ρ(T ), where Tj is the tree of Figure 5. Now, we
apply Diagonalize(Tj, −λ) with the root at Sr2 , for λ = ρ(T ). By our comparison method,
we see that

fTj
(u) = −λ− 1

aj
− r2
a2

< 0

or, equivalently, aj+1 <
r2
a2
, and since a2 < 0, we get r2 < a2aj+1.

Taking the limit on both sides and using Equation (3.3), we obtain

r2 ≤ lim
j→∞

a2aj+1 = lim
j→∞

a2aj = r∗.

We also observe that r∗ < r1, because r∗ =
a2
θ
= 2 λ2−1

λ (λ+
√
λ2−4)

< 2 ≤ r1.

Since zj = θ + θ−1−θ
β(r)(θ2)j+1

, for θ−1 − θ =
√
λ2 − 4 > 0 and θ < 0, we see that zj is always

negative and decreasing, as long as β(r) > 0. Now, because r∗ < r1 < r2 ≤ r∗, we see from
item (b), that β(r) > 0. Moreover zj tends to θ as j →∞.

4 Ordering the 2-switches of F(n)

We show in this section how the spectral radius varies in each case for all the possible 2-
switching positions in the appropriate interval. We notice that F(n) is preserved by both
types of (s, t)-2-switch, only changing [h, q1, q2] (see Figure 6). For 2-switches of Type I, h
decreases to 2, while q1 increases to q1 + h− 2 and q2 is constant. For 2-switches of Type II,
h is constant, q1 decreases to 2, while q2 increases to q2 + q1 − 2.

10



Oliveira et al./ American Journal of Combinatorics 1 (2022) 1–19

4.1 Warmup: Ordering 2-switches of Type I

Given a 2-switch of Type I such that T = [h, q1, q2] → T̃ = [h′, q′1, q
′
2] (see Figure 3), we

observe that the actual result of the operation in the tree is an increment (decrement) of the
length h with a decrement (increment) of the length q1, while q2 remains unchanged.

In order to study the behavior of the spectral radius of members of this family, it is
enough to study the 2-switch T = [h, q1, q2] → T̃ = [h′ = h − 1, q′1 = q1 + 1, q′2 = q2], since
this will cover all possible positions.

We will prove that ρ(T ) > ρ(T̃ ) using our comparison method, hence we need to prove
that if −λ − 1

ah
− 1

bq1
− 1

cq2
= 0 then −λ − 1

ah′
− 1

bq′1
− 1

cq2
= −λ − 1

ah−1
− 1

bq1+1
− 1

cq2
< 0.

Notice that, from the first equation, we obtain −λ− 1
cq2

= 1
ah

+ 1
bq1

and substituting in the

second one it is equivalent to 1
ah

+ 1
bq1
− 1

ah−1
− 1

bq1+1
< 0, which in turn is equivalent to

(ah − ah+1) + (bq1+2 − bq1+1) < 0. (4.1)

From Theorem 3.1, the sequence aj is increasing thus ah− ah+1 < 0. From Theorem 3.2,
the sequence bj is decreasing thus bq1+2 − bq1+1 < 0.

We remark that the transformation T = [h, q1, q2]→ T̃ = [h′ = h−1, q′1 = q1, q
′
2 = q2+1]

is also of Type-I, and we can show that the index decreases as well by using a similar
argument. This proves the following theorem.

Theorem 4.1. Let T = [h, q1, q2] be a tree in F(n) and T̃ = [h′, q′1, q
′
2] be the graph obtained

by a 2-switch in Figure 3. If h′ = h− 1, q′1 = q1 + 1 and q′2 = q2 or if h′ = h− 1, q′1 = q1 and
q′2 = q2 + 1 then ρ(T ) > ρ(T̃ ).

We remark that this result may be obtained also by using Lemma 2.2 due to Hoffman &
Smith [8]. We add an edge on the internal path from u to r1P2 (or from u to r2P2) and then
erase the pendant vertex from Ph, so that the spectral radius decreases even more, keeping
both with the same number of vertices.

Our method, after we obtained that the sequence bj is decreasing, is simple enough to
provide the alternative proof. On the contrary, we are not aware of any alternative known
method to prove Theorem 4.2, that deals with 2-switching of Type II. Additionally, or
perhaps because of that, the application of our method requires to overcome quite a few
technical difficulties.

4.2 Ordering 2-switches of Type II

We observe that a 2-switch of type II can be seen as a displacement of the central path of
length h from the position closest to r1 P2 to the closest to r2 P2 (or vice versa). Indeed, if
we take s = q2 then q′1 = q2 + t− s = t and q′2 = q1 − t+ q2 = q1 + q2 − t, for 1 ≤ t ≤ q1 − 1.
For instance, taking t = 1 we can apply the 2-switch sequentially.

Since every configuration [h, q1, q2] can be obtained by successive changes by 1, we only
need to consider the case where T = [h, q1, q2] → T̃ = [h, q′1 = q1 − 1, q′2 = q2 + 1]. We will
prove that this operation decreases the spectral radius

By using our method of Section 2, given a 2-switch of Type II we need to prove that if
−λ− 1

ah
− 1

bq1
− 1

cq2
= 0 then −λ− 1

ah
− 1

bq1−1
− 1

cq2+1
< 0.

11
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Theorem 4.2. Let T = [h, q1, q2] be a tree obtained by a 2-switch in Figure 4. If r2 > r1 ≥ 2,
q′1 = q1 − 1 and q′2 = q2 + 1 then ρ(T ) > ρ(T ′).

Proof. Given a 2-switch of Type II, we need to prove that if −λ − 1
ah
− 1

bq1
− 1

cq2
= 0 then

−λ− 1
ah
− 1

bq1−1
− 1

cq2+1
< 0. We define

I := − 1

ah
+

(
−λ− 1

bq1−1

)
− 1

cq2+1

= − 1

ah
+ bq1 −

1

cq2+1

.. (4.2)

Now, equation − 1
ah
− 1

bq1
+

(
−λ− 1

cq2

)
= 0 may be read as cq2+1 = 1

ah
+ 1

bq1
. Substituting

that in (4.2) we obtain

I = − 1

ah
+ bq1 −

1
1
ah

+ 1
bq1

. (4.3)

Using the fact that ah < 0 and bq1 < 0 conclude that I < 0 if and only if

ah(b
2
q1
− 1) < bq1 . (4.4)

We already know that ah < θ < bq1 but we do not know the sign of b2q1 − 1. We
claim that b2q1 − 1 > 0. To see that, we recall that bj is decreasing and b1 is given by
b1 := −λ− r1

−λ+ 1
λ

= ϕ(λ, r1) where the auxiliary function ϕ : A→ R is given by

ϕ(t, r) := −t− r

−t+ 1
t

,

defined on the set A = {(t, r) | t ≥ 2, r ≥ 2} ⊂ R2.

Figure 8: The graph of ϕ(t, r)2 − 1 plotted in A.

It is easy to see that ϕ(t, r)2−1 > 0 for (t, r) ∈ A, see Figure 8. In other words, b21−1 > 0
and b1 < −1 because it is negative. For any T ∈ F(n) we conclude that θ < bq1 < −1 = b1,
for any T ∈ F(n). In particular b2q1 − 1 > 0.

From these facts, we can rewrite equation (4.4) in the equivalent form

ah <
bq1

b2q1 − 1
. (4.5)

12
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In order to conclude our proof, it is sufficient to prove that θ <
bq1

b2q1−1
because ah < θ for all

h. At this point, it is useful to introduce a second auxiliary function

ψ(t) :=
t

t2 − 1
, t < 0.

This function is obviously decreasing in the interval (−∞, −1). As the correspondence
j → bj is also decreasing, we conclude that the correspondence j → ψ(bj) is increasing and,

as a consequence, b1
b21−1

<
bq1

b2q1−1
.

We claim that b1
b21−1

> θ or equivalently(
−λ− r1

−λ+ 1
λ

)
(
−λ− r1

−λ+ 1
λ

)2

− 1
>
−λ−

√
λ2 − 4

2
, (4.6)

for λ = ρ(T ).
The inequality (4.6) is equivalent to g(x, r) > 0 for x ≥ ρ(T ) ≥

√
r2 + 2 ≥

√
r1 + 3 and

r = r1 ≥ 2, where g : B → R is given by

g(x, r) =

(
−x− r

−x+ 1
x

)
(
−x− r

−x+ 1
x

)2

− 1
+
x+
√
x2 − 4

2
,

defined on B = {(x, r) |x ≥
√
r + 3, r ≥ 2} ⊂ R2.

Figure 9: The graph of g on B.

As we can see in Figure 9, the function is always positive in this set concluding our
proof.

5 Spectral radius ordering in F(n)

In this section we provide a total ordering by the spectral radius in the family F(n). In order
to recall our notation, we notice that r1 > r2 ≥ 2 and the number n of vertices is fixed,
hence each element in F(n) is uniquely determined by the 3-uple [h, q1, q2], that is,

F(n) := {T = [h, q1, q2] | h+ q1 + q2 = n− 1− 2(r1 + r2), h, q1, q2 ≥ 2}.

13
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The degree sequence of an element T ∈ F(n) is given by d := [r1+1, r2+1, 3, 2n−(r1+r2)−2, 1r1+r2+1],
for a fixed pair r1 > r2 ≥ 2. We recall the well known result from [7] (also [4]):

Theorem 5.1. If G and H have the same degree sequence, then there exists a 2-switch
sequence transforming G into H.

As a consequence, given an element in F(n), it maybe transformed into any other by a
sequence of 2-switch transformations.

The remarkable fact is that, as we will see next, we can reach any element from another
using only two types of 2-switches. Additionally, the sequence of 2-switches is closed in the
family, that is, any intermediate member is also a member. Given T = [h, q1, q2] ∈ F(n) we
define the following operations.

� α : F(n)→ F(n), given by α([h, q1, q2]) = [h− 1, q1 + 1, q2], for h ≥ 3;

� β : F(n)→ F(n), given by β([h, q1, q2]) = [h, q1 − 1, q2 + 1], for q1 ≥ 3.

� γ : F(n)→ F(n), given by β([h, q1, q2]) = [h− 1, q1, q2 + 1], for h ≥ 3.

We remark that the transformations make sense for h, q1, q2 ≥ 1, and the results from
Section 4 do apply. However, we observe that the original T = [h, q1, q2] and the transformed
tree T ′ = [h′, q′1, q

′
2] must have parameters h, h′, q1, q

′
1, q2, q

′
2 ≥ 2, otherwise they will not be

2-switches, because the degree sequence changes.

Theorem 5.2. Let α, β and γ be the transformations defined in F(n). Let T ∗ = [h0, 2, 2],
where h0 := n− 5− 2(r1 + r2) ≥ 2. The following facts are true

(a) α, β and γ are 2-switch transformations;

(b) α, β and γ are index decreasing transformations;

(c) Any T ∈ F(n) can be obtained from T ∗ by a sequence of α and β transformations;

(d) Any T ∈ F(n) can be obtained from T ∗ by a sequence of α and γ transformations.

Proof. From our definition of Section 2, we see that α and γ are Type-I 2-switches, while
β is a Type-II 2-switch and our results of Theorem 4.1 and Theorem 4.2 apply, hence they
decrease the index. This proves (a) and (b).
(c) To see that, consider the tree T ∗ = [h0, 2, 2]. As T

∗ = u+ Ph0 ∗ S0 ⊕ P2 ∗ Sr1 ⊕ P2 ∗ Sr2 ,
and h0 = n − 5 − 2(r1 + r2) ≥ 2, because n ≥ 7 + 2(r1 + r2), we see that T ∗ ∈ F(n). Let
T = [h′, q′1, q

′
2] be any tree in F(n) (h′, q′1, q

′
2 ≥ 2). Then we have the following

α([h0, 2, 2]) = [h0 − 1, 2 + 1, 2], α([h0 − 1, 2 + 1, 2]) = [h0 − 2, 2 + 2, 2], and so on, until we
obtain h0 − k = h′, that is αk([h0, 2, 2]) = [h′, 2 + (h0 − h′), 2].
Now we apply β transformation j times obtaining βjαk([h0, 2, 2]) = [h′, 2+(h0−h′)−j, 2+j].
At this point we claim that, making 2+(n−5−2(r1+r2)−h′)−j = q′1 we get 2+j = q′2. Indeed,
2+(n−5−2(r1+r2)−h′)−j = q′1 means that j = 2+(n−5−2(r1+r2)−h′−q′1)−q′2+q′2 =
q′2 − 2 + (n− (1 + h′ + q′1 + q′2 + 2(r1 + r2))) = q′2 − 2. Hence 2 + j = q′2. Thus we conclude
that there exist k, j ∈ N such that βjαk(T ∗) = T for any T ∈ F(n).

14
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(d) A similar reasoning as in (c) shows that T ∗ ∈ F(n). We now apply k′ = q′1 − 2 times
the transformation α, arriving at [h0 − k′, q′1, 2]. Reasoning as above we show that there is
an integer j′ so that h0 − k′ − j′ = h′ and q′2 = 2 + j′. Hence applying now j′ times the
transformation γ, shows that γj

′
αk′(T ∗) = T .

We observe that T ∗ = [h0, 2, 2] has the configuration with largest possible h0. From
Theorem 5.2 (b) and (c) (or from (b) and (d)), it follows that T ∗ is the extremal element of
F(n): it has the maximum spectral radius.

The next result is quite remarkable in the sense that it provides a complete ordering of
F(n) using only α and γ transformations, allowing us to find also the element of minimum
index.

Theorem 5.3. Consider the family F(n), where 2 ≤ r1 < r2, h0 = n − 5 − 2(r1 + r2) ≥ 2,
T ∗ = [h0, 2, 2] ∈ F(n) and T∗ = [2, 2, h0] ∈ F(n). The following claims are true.

(a) The elements of the ordered sequence

A := {T ∗, α(T ∗), · · · , αh0−2(T ∗), γ(T ∗), α(γ(T ∗)), · · · , αh0−3(γ(T ∗)), · · · , γh0−2(T ∗) = T∗}

compose the set F(n);

(b) The sequence A is ordered by the inverse lexicographic order:
[x, y, z] ≻ [x′, y′, z′] iff z′ > z or z′ = z but y′ > y.

(c) If [x, y, z] ≻ [x′, y′, z′] then ρ([x, y, z]) > ρ([x′, y′, z′]);

(d) The maximum (resp. minimum) index in F(n) is ρ(T ∗) (resp. ρ(T∗)).

Before we prove Theorem 5.3 we need a technical lemma.

Lemma 5.4. If T ∗ = [h0, 2, 2] ∈ F(n), then ρ(αh0−j−2(γj(T ∗)) > ρ(γj+1(T ∗)), for j =
0, 1, 2, ..., h0 − 2, that is,

ρ([2, h0 − j, 2]) > ρ([h0 − (j + 1), 2, 2 + (j + 1)]).

Proof. We will consider the first case j = 0. The rest of the cases are identical. Thus, we
must prove that

ρ([2, h0, 2]) > ρ([h0 − 1, 2, 3]).

Taking λ = ρ([2, h0, 2]) and applying Diagonalize([2, h0, 2],−λ), we have

−λ− 1

a2
− 1

bh0

− 1

c2
= 0.

From this, we obtain c3 =
1

1
a2

+ 1
bh0

.

Analogously, applying Diagonalize([h0 − 1, 2, 3],−λ), we have

−λ− 1

ah0−1

− 1

b2
− 1

c3
=: I.
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We need to show that I < 0. Writing I = ah0 − 1
b2
− 1

1
a2

+ 1
bh0

, we conclude that I < 0 if the

function

g(λ, r1, h0) := ah0 −
1

b2
− 1

1
a2

+ 1
bh0

is always negative for r1 ≥ 2, h0 ≥ 2 and λ ≥
√
r1 + 3.

At a first glance, we cannot plot a graph as we did before because we have three variables.
However, if we consider the variation of the variable h0 we observe that the correspondence
h0 → g(λ, r1, h0) is monotonously increasing because

d

dh0
g(λ, r1, h0) =

dah0

dh0
− 1(

1
a2

+ 1
bh0

)2

1

b2h0

dbh0

dh0
> 0,

since
dah0
dh0

> 0 and
dbh0
dh0

< 0.
Hence we just need to show that the limit function

f(λ, r1) := lim
h0→∞

g(λ, r1, h0) = θ − 1

b2
− 1

1
a2

+ 1
θ

is always negative for C := {(λ, r1) | r1 ≥ 2, λ ≥
√
r1 + 3}, as shown on Figure 10, concluding

our proof.

Figure 10: The graph of f on C.

Proof. (of Theorem 5.3)
To see (a) we first see that both transformations α and γ decrease the index. By Theorem 5.2
(d), we can reach any configuration from T ∗, showing that every configuration appears in
the sequence A.
For (b), we notice that the inverse lexicographic order:
[x, y, z] ≻ [x′, y′, z′] if and only if z′ > z or z′ = z but y′ > y, is naturally produced in A. For
instance comparing [x, y, z] with [x′, y′, z′] = α([x, y, z]) = [x − 1, y + 1, z] we obtain z′ = z
but y′ > y. The only possible difficulty is to compare, for example, [x, y, z] = αh0−2(T ∗) =
[2, h0 − 2, 2] with [x′, y′, z′] = γ(T ∗) = [h0 − 1, 2, 3], in this case we have z′ > z.
For (c) we can use the same reasoning, if the next element is obtained from the previous one
by α the index decreases by Theorem 4.1. Again, it remains to analyse the case [x, y, z] =

16
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αh0−2(T ∗) = [2, h0 − 2, 2] and [x′, y′, z′] = γ(T ∗) = [h0 − 1, 2, 3]. In this case the index
decrease by Lemma 5.4.
The item (d) is a direct consequence of the previous items.

Example 5.5. We consider F(23), with r1 = 2, r2 = 3 and h0 = n − 5 − 2(r1 + r2) = 8.
In this case T ∗ = [h0, 2, 2] = [8, 2, 2] and T∗ = [2, 2, h0] = [2, 2, 8]. We will use the same
procedure described in the proof of Theorem 5.3 to build a table where we show the spectral
radius of each intermediary tree:

Transf. / A Tree Index
T ∗ [8, 2, 2] 2.31431268823172996316982502630

α(T ∗) [7, 3, 2] 2.30752321205156788164155922354
α2(T ∗) [6, 4, 2] 2.30509257122848263666229555974
α3(T ∗) [5, 5, 2] 2.30414417603593895847264293478
α4(T ∗) [4, 6, 2] 2.30348720654135784657134525755
α5(T ∗) [3, 7, 2] 2.30226165044440472718571097461
α6(T ∗) [2, 8, 2] 2.29881642949995094980856594643
γ(T ∗) [7, 2, 3] 2.28520768467980257500859073365

α(γ(T ∗)) [6, 3, 3] 2.28076523286917478390041282633
α2(γ(T ∗)) [5, 4, 3] 2.27913084342903308996825366690
α3(γ(T ∗)) [4, 5, 3] 2.27834791245706879712729095155
α4(γ(T ∗)) [3, 6, 3] 2.27748824925244285093685838480
α5(γ(T ∗)) [2, 7, 3] 2.27554403106324050144208754160
γ2(T ∗) [6, 2, 4] 2.27010998510725135104117051475

α(γ2(T ∗)) [5, 3, 4] 2.26762484634172519636930335282
α2(γ2(T ∗)) [4, 4, 4] 2.26667762008239070931668388638
α3(γ2(T ∗)) [3, 5, 4] 2.26605728367174815669677409819
α4(γ2(T ∗)) [2, 6, 4] 2.26506821261118740374393886088
γ3(T ∗) [5, 2, 5] 2.26290253458453744084697620016

α(γ3(T ∗)) [4, 3, 5] 2.26171078345443097808224085587
α2(γ3(T ∗)) [3, 4, 5] 2.26119844487818869745804831320
α3(γ3(T ∗)) [2, 5, 5] 2.26069897200749878293447592468
γ4(T ∗) [4, 2, 6] 2.25980268994372236598891968054

α(γ4(T ∗)) [3, 3, 6] 2.25927957177517211016191460326
α2(γ4(T ∗)) [2, 4, 6] 2.25898741243972985580277387992
γ5(T ∗) [3, 2, 7] 2.25857320563154910353684549335

α(γ5(T ∗)) [2, 3, 7] 2.25834278165321357168906331906
γ6(T ∗) = T∗ [2, 2, 8] 2.25810972712429442797185863240

As expected, the index ordering in F(23) is total.

Remark 5.6. Theorem 5.3 has a powerful application, not only we can obtain the extremal
indices in F(n), but given any [x, y, z] ∈ F(n) and a 2-switch F , such that F ([x, y, z]) =
[x′, y′, z′] we can immediately say if F increases or decreases the index by using the order
relation in Theorem 5.3 (c).
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