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Abstract

A matrix is called acyclic if replacing the diagonal entries with 0, and the nonzero
diagonal entries with 1, yields the adjacency matrix of a forest. In this paper we show
that the null space and the rank of an acyclic matrix with 0 in the diagonal is obtained
from the null space and the rank of the adjacency matrix of the forest by multipliying
by nonsingular diagonal matrices. We combine these with an algorithm for finding a
sparsest basis of the null space of a forest to provide an optimal time algorithm for
finding a sparsest basis of the null space of acyclic matrices with 0 in the diagonal.

1 Introduction

Throughout this article, all graphs are assumed to be finite, undirected, and without loops
and multiple edges. The vertex set of a graph G is denoted by V (G) and its edge set by E(G).
The (i, j)−entry of a matrix M is denoted Mi,j. Unless specified for a particular example, we
assume our matrices are defined over an arbitrary field F. Following the notation in [10], we
denote by MF(G) the set of all matrices M over F with rows and columns indexed by V (G),
so that for every two distinct vertices u, v ∈ V (G), the Mu,v ̸= 0 if and only if {u, v} ∈ E(G).
Notice that the diagonal entries are allowed to be nonzero. A matrix M over F is said to
be acyclic if M ∈ MF(F ) for a forest F . If the forest F is a tree, then M is said to be
tree-patterned. See Figure 1 for an example.

Given a graph G, the adjacency matrix of G, denoted by A(G), is the only (0, 1)−matrix
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M =



0 2 0 0 0 0 0
3 0 −1 0 0 5 0
0 −2 0 −7 0 0 0
0 0 3 0 5 0 0
0 0 0 1 0 0 0
0 7 0 0 0 0 −3
0 0 0 0 0 −5 0


T

q r

v

w

s t u

Figure 1: A tree T and a matrix M ∈ MR(T ), where the labels of the vertices are in
alphabetical order (i.e., vertex q correspond to the first row and column of M , vertex r to
the second, and so on).

in MF(G) with zero diagonal. For T in Figure 1 we have

A(T ) =



0 1 0 0 0 0 0
1 0 1 0 0 1 0
0 1 0 1 0 0 0
0 0 1 0 1 0 0
0 0 0 1 0 0 0
0 1 0 0 0 0 1
0 0 0 0 0 1 0


,

where rows and columns are in alphabetical order (i.e., the first row and column correspond
to vertex q, the second to r, and so on).

In [10], the following lemma was proved.

Lemma 1.1. Let M be an acyclic matrix over a field F. Then there exist a finite-dimensional
field extension E of F and a diagonal matrix D over E such that D−1MD is symmetric.

Due to a previous version of Lemma 1.1 (which first appeared in [13]), most of the study
of acyclic matrices was done on symmetric matrices. The matrices considered in this article
do not need to be symmetric. This is done because the proofs work almost identically, and in
this way there is no need to calculate the necessary diagonal matrix over the field extension.

The fundamental spaces of a matrix M are its null space, Null (M), and its rank,
Rank (M). The structure of the fundamental spaces of graph-patterned matrices has been
studied in depth for symmetric tree-patterned matrices allowing nonzero entries in the
diagonal, see for instance [3, 11, 12, 14]. While most of the focus on these articles has
been on the dimension of the null space, the important problem of finding a basis for it has
not been studied.

Given M ∈ MF(G), the null support of M , denoted Supp(M), is the set of vertices of G
that have nonzero entries in at least one vector from Null (M). In other words, v ∈ Supp(M)
if there is a vector x⃗ ∈ Null (M) with xv ̸= 0, where xv is the coordinate of x⃗ corresponding to
vertex v. For the adjacency matrix A(T ) of the tree T in Figure 1, Null (A(T )) is generated
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by (1, 0,−1, 0, 1, 0, 0)T , and thus we have Supp(A(T )) = {q, s, u}. Similarly, Null (M), for M
in Figure 1, is generated by (1, 0, 3, 0,−9/5, 0, 0)T , and Supp(M) = {q, s, u}. Notice that in
this case Supp(M) and Supp(A(T )) coincide. In Section 2 we show that this is the case for
every tree (and for every forest). In [6] the null support of adjacency matrices of forests has
been studied in depth. The authors provided a decomposition for any forest into an S-forest
(a forest that has a unique maximum independent set), and an N -forest (a forest that has a
unique maximum matching). They showed that all the information of the null space of A(F )
can be obtained from the S-forests and N -forests related to F . It was implicitly shown that
Null (A(F )) coincides with the intersection of all the maximum independent sets of F . In [7]
the authors studied sparsest (i.e., has the fewest nonzeros) {−1, 0, 1} basis for the null space
of a forest, and provided an algorithm that finds such a basis in optimal time (i.e., in linear
time with respect to the number of nonzero entries of the basis). The problem of finding a
sparsest basis of the null space of a matrix is important for numerical applications. Finding
such a basis in general is known to be NP-complete [2] and even hard to approximate [5].

Let MF,0(G) be the set of matrices in MF(G) with zero in the diagonal. In Section 2
we show that given a forest F , the null space of any matrix in MF,0(F ) can be obtained
by multiplying the null space of F by a suitable nonsingular diagonal matrix. This allows
the use of the tools developed in [6, 7] for the study of the null space of said matrices. In
particular, we use the results of [7] to give an optimal time algorithm for finding a sparsest
basis for the null space of the matrix. In Section 3 we prove that the rank of any matrix
in MF,0(F ) can be found by multiplying the rank of F by a suitable nonsingular diagonal
matrix.

Square matrices with zero diagonal are also known as hollow matrices. They are usual
in chemistry (see [9]), via the notion of distance matrix. Grood et al, see [4], studied the
minimum possible rank among all the symmetric matrices with zero diagonal.

2 On the null space

The null space of a graph is the direct sum of the null spaces of its connected components.
In a similar fashion, the null space of a matrix M ∈ MF(G) is the direct sum of the null
spaces of M over the connected components of G. Because of this, we restrict our study the
null space of matrices over trees.

Lemma 2.1, which is fundamental for our results, first appeared in [10] as Theorem 8(i).

Lemma 2.1. [10] Let F be a forest, and M ∈ MF,0(F ). If {v, w} ∈ Supp(M), then {v, w} ̸∈
E(F ).

Let T be a tree, M ∈ MF,0(T ), and v be a vertex of T . For each vertex w ∈ T , let vPw
be the unique directed path from v to w in T . In this sense vPw and wPv are different,
because we care about the direction. We define the v-scalation of M as the nonsingular
diagonal matrix given by

D(M,v)
w1,w2

=


∏

u∈Supp(M),
(u,t)∈vPw1

M−1
t,u

∏
u∈Supp(M),
(t,u)∈vPw1

Mt,u if w1 = w2,

0 otherwise.
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For matrix M in Figure 1, we have

D(M,q)
q,q =1

D(M,q)
r,r =

1

3

D(M,q)
s,s =

1

3
(−1) = −1

3

D
(M,q)
t,t =

1

3
(−1)

1

3
= −1

9

D(M,q)
u,u =

1

3
(−1)

1

3
5 = −5

9

D(M,q)
v,v =

1

3

D(M,q)
w,w =

1

3
,

thus, the q-scalation is

D(M,q) =



1 0 0 0 0 0 0
0 1

3
0 0 0 0 0

0 0 −1
3

0 0 0 0
0 0 0 −1

9
0 0 0

0 0 0 0 −5
9

0 0
0 0 0 0 0 1

3
0

0 0 0 0 0 0 1
3


.

Similarly, the s-scalation is

D(M,s) =



−3 0 0 0 0 0 0
0 −1 0 0 0 0 0
0 0 1 0 0 0 0
0 0 0 1

3
0 0 0

0 0 0 0 5
3

0 0
0 0 0 0 0 −1 0
0 0 0 0 0 0 −1


and the u-scalation is

D(M,u) =



−9
5

0 0 0 0 0 0
0 −3

5
0 0 0 0 0

0 0 3
5

0 0 0 0
0 0 0 1

5
0 0 0

0 0 0 0 1 0 0
0 0 0 0 0 −3

5
0

0 0 0 0 0 0 −3
5


.
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Notice that

D(M,q)



1
0
3
0

−9
5

0
0


=



1
0

−1
0
1
0
0



D(M,s)



1
0
3
0

−9
5

0
0


=



−3
0
3
0

−3
0
0


= −3



1
0

−1
0
1
0
0



D(M,u)



1
0
3
0

−9
5

0
0


=



−9
5

0
9
5

0
−9

5

0
0


= −9

5



1
0

−1
0
1
0
0


.

What we are seeing is that in our example D(M,a)x⃗ is in Null (A(T )) for every a ∈ Supp(M)
and every x⃗ ∈ Null (M). We are going to show that this is the case in general, but first we
present a useful lemma, that follows from the definition of D(M,v) and Lemma 2.1.

Lemma 2.2. Let T be a tree, M ∈ MF,0(F ), u, v ∈ V (T ), vPu = (v = v0, v1, . . . , u1, u) and
vPu2 = (v = v0, v1, . . . , u1, u, u2) two directed paths in T . The following statements are true.

1. If u1, u2 ∈ Supp(M),

D(M,v)
u2,u2

= D(M,v)
u1,u1

M−1
u,u1

Mu,u2 .

2. If u1 ∈ Supp(M), u2 ̸∈ Supp(M),

D(M,v)
u2,u2

= D(M,v)
u1,u1

M−1
u,u1

.

3. If u1 ̸∈ Supp(M), u2 ∈ Supp(M),

D(M,v)
u2,u2

= D(M,v)
u1,u1

Mu,u2 .

4. If u1, u, u2 ̸∈ Supp(M),

D(M,v)
u2,u2

= D(M,v)
u1,u1

.
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5. If u ∈ Supp(M),

D(M,v)
u2,u2

= D(M,v)
u1,u1

Mu1,uM
−1
u2,u

.

As a direct consequence of Lemma 2.2, the matrices D(M,v) and
(
D(M,v)

)−1
can be

obtained in linear time over the number of vertices, as at most one multiplication must
be done at each vertex.

Theorem 2.3. Given a tree T , a matrix M ∈ MF,0(T ) and a vertex v ∈ Supp(M), a vector
x⃗ is in Null (M) if and only if D(M,v)x⃗ is in Null (A(T )).

Proof. Suppose x⃗ = (x1, . . . , xn) ∈ Null (M), and let v ∈ Supp(M).
We want to show A(T )D(M,v)x⃗ = 0. Consider

(
A(T )D(M,v)x⃗

)
u
. If x⃗w = 0 for all w ∼ u,

then

(
A(T )D(M,v)x⃗

)
u
=

∑
w∼u

D(M,v)
w,w xw = 0.

Otherwise, let (w1, u) ∈ vPu. If xw1 ̸= 0, then applying Lemma 2.2 we get:

(A(T )Dx⃗)u = Dw1,w1xw1 +
∑
w∼u,
w ̸=w1

Dw,wxw

= Dw1,w1xw1 +
∑
w∼u,
w ̸=w1

xwDw1,w1

(
M−1

u,w1
Mu,w

)

= Dw1,w1M
−1
u,w1

Mu,w1xw1 +
∑
w∼u,
w ̸=w1

xwMu,w


= Dw1,w1M

−1
u,w1

(Mx⃗)u

= 0.

If xw1 = 0, and xw ̸= 0 for some w ∼ u, Lemma 2.2 implies:

(A(T )Dx⃗)u =
∑
w∼u,
w ̸=w1

Dw,wxw

=
∑
w∼u,
w ̸=w1

xwDw1,w1Mu,w

= Dw1,w1(Mx⃗)u

= 0

Therefore A(T )D(M,v)x⃗ = 0.
For the reciprocal, similar arguments working with D−1 instead of D yield the result.
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If we consider a forest instead of a tree, then a diagonal matrix can be obtained by
choosing a vertex in each connected component, and working in a similar fashion. Let F be
a forest, and U ⊂ V (F ) such that U has at most one vertex in each connected component
of F . We define the U-scalation of M as the nonsingular diagonal matrix with

D(M,U)
w,w =

∏
v∈U

D(M,v)
w,w ,

where D
(M,v)
w,w = 1 if v and w belong to different connected components of F .

In order to generalize Theorem 2.3 we need a set U with elements in every component
with a vertex in Supp(M). Given a forest F with connected components T1, ..., Tk, a set
U ⊂ Supp(M) is supp-transversal of M if U ∩ V (Ti) ̸= ∅ whenever Supp(M)∩ V (Ti) ̸= ∅. We
have the following.

Corollary 2.4. Given a forest F and a matrix M ∈ MF,0(F ), a vector x⃗ is in Null (M) if
and only if D(M,U)x⃗ is in Null (A(F )) for every set U supp-transversal of M .

Corollary 2.5. Let F be a forest, and M,N ∈ MF,0(F ). For every set U1 supp-transversal
of M and every set U2 supp-transversal of N , x⃗ ∈ Null (M) if and only if D(M,U1)(D(N,U2))−1x⃗
is in the null space of N .

Corollary 2.6. Given a forest F , and a pair of matrices M,N ∈ MF,0(F ), a vertex v is in
Supp(M) if and only if v it is in Supp(N).

Proof. If v ∈ Supp(M), there is some x⃗ ∈ Null (M) with x⃗v ̸= 0. Thus, by Corollary 2.5,
the vector D(M,v1)(D(N,v2))−1x⃗ is in Null (N) for some v1 ∈ Supp(M), v2 ∈ Supp(N). But(
D(M,v1)(D(N,v2))−1x⃗v

)
̸= 0 because D(M,v1) and D(N,v2) are nonsingular diagonal matrices.

Therefore, v ∈ Supp(N).

Corollary 2.6 implies that the null support of matrices in MF,0(F ) depend only on F .
Thus, we can talk about the null support of a forest F , Supp(F ), as the null support of
matrices in MF,0(F ).

The next two corollaries are given to illustrate the strength of Corollary 2.5, and the
relation between the structure of a forest F and the null space of the matrices in MF,0(F ).
In [6], the concept of the S-set of a tree T was introduced. It is the subgraph induced
by Supp(T ) ∪ N(Supp(T )) (where N(Supp(T )) denotes the neighborhood of Supp(T )) and is
denoted FS(T ). In other words, FS(T ) is the subgraph induced by the vertices in the null
support and the neighbors of the vertices in the null support. One of the main results from
[6] is the fact that the null space of a tree T is the same as the null space of FS(T ), extended
with 0 to match the dimensions. The same holds true for matrices in MF,0(T ). And, using
direct sum, the same holds true for forests.

In order to relate the null space of FS(F ) to the null space of a matrix M ∈ MF,0(F ), we
introduce the following notation. Given a matrix M ∈ MF,0(F ), and G an induced subgraph
of F , we denote by M [G] the matrix obtained by deleting the rows and columns of vertices
not in G. We do the same for vectors, x⃗[G] denotes the vector obtained from x⃗ by deleting
the coordinates corresponding to vertices not in G.

45



Jaume et al./ American Journal of Combinatorics 2 (2023) 39–58

Corollary 2.7. Let F be a forest, M ∈ MF,0(F ) and x⃗ ∈ FF . Then x⃗ ∈ Null (M) if and
only if:

� x⃗ [FS(F )] ∈ Null (M [FS(F )]), and

� x⃗ [V (F ) \ FS(F )] = 0⃗.

A helpful result, implicit in [6], is the fact that Supp(T ) is the intersection of all maximum
independent sets of T . Which yields the following.

Corollary 2.8. Let F be a forest, M ∈ MF,0(F ), and v ∈ V (F ). Then v ∈ Supp(M) if and
only if v is in every maximum independent set of F .

The next corollary, originally proved in [10], follows directly from Corollary 2.5 and the
fact that the dimension of the rank of a tree is twice its matching number (see [1]).

Corollary 2.9. If F is a forest and M ∈ MF,0(F ), then dimRank (M) = 2m, where m is
the size of a maximum matching in F .

We can use the relation between the null space of a forest F and the null space of any
matrix M ∈ MF,0(F ) to find a basis for the null space of M . This is done in Algorithm 1.
Finding the forest F given the matrix M takes linear time, because it can be obtained by
replacing the entries by 1, and the matrix has at most 2(n − 1) nonzero entries (the edges
of the forest). As D(M,U) does not change the support of a vector, a sparsest basis for
the null space of F provides a sparsest basis for the null space of M once it is multiplied
by (D(M,U))−1. In [7] the support of a forest was found in linear time with respect to the
number of vertices of the forest, and, once the support was found, a {−1, 0, 1} and sparsest
basis for the null space of a forest was obtained in linear time with respect to the number of
nonzero entries of the basis.

Using the support, finding D(M,U) and (D(M,U))−1 takes linear time on the number of
vertices, as for each vertex only one operation needs to be done. Afterwards, multiplying the
elements of the basis found using the algorithm from [7] by (D

(M,U)
v,v )−1 takes one operation

per each nonzero entry in the vectors of the basis of the forest. Hence a sparsest basis for
the null space of M can be found in linear time with respect to the maximum between the
number of vertices and the number of nonzero entries in the vectors of a sparsest basis. We
call such time optimal, as just writing a basis down takes at least linear time on the number
of nonzero entries it has.
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Algorithm 1: for finding a sparsest basis of the null space of an acyclic matrix
with 0 in the diagonal.

1. INPUT: M , an acyclic matrix with 0 in the diagonal.

2. Find F such that M ∈ MF,0(F ).

3. Apply the algorithms from [7] to find a sparsest basis, BF of A(F ) and Supp(F ).

4. Find the connected components of F .

5. For each Ti connected component of F with Supp(A(Ti)) ̸= ∅ chose vi ∈ Supp(A(Ti)),
and let U be the set of the chosen vi.

6. Calculate (D(M,U))−1. To do this, root each Ti at vi, and prooceed inductively as
follows. First, let (D(M,U))−1

vi,vi
= 1. Next, take a vertex w ∈ Ti such that

(D(M,U))−1
p(w),p(w) has been defined, where p(w) be is the parent of w. If

p(w) ∈ Supp(A(Ti)), let (D
(M,U))−1

w,w = Mw,p(w)(D
(M,U))−1

p(w),p(w). If p(w) ̸∈ Supp(A(Ti))

and w ∈ Supp(A(Ti)), let (D
(M,U))−1

w,w = M−1
p(w),w(D

(M,U))−1
p(w),p(w). If

w, p(w) ̸∈ Supp(A(Ti)), let (D
(M,U))−1

w,w = M−1
p(w),w(D

(M,U))−1
p(w),p(w). Once this process

stops, if (D(M,U))−1
w,w was not defined, let (D(M,U))−1

w,w = M−1
p(w),w(D

(M,U))−1
p(w),p(w) = 1.

7. Calculate BM = (D(M,U))−1BF

8. OUTPUT BM

Algorithm 1 expands the set of matrices for which a sparsest basis of the null space can
be found in optimal time. For an example, see Appendix A.

3 On the rank

In the previous section we proved that given a forest F and M ∈ MF,0(F ), Null (M) is a
nonsingular diagonal multiplication of Null (A(F )). In this section show that Rank (M) is a
nonsingular diagonal multiplication of Rank (A(F )). In order to do so, first we find a basis
for the rank of M .

Let v ̸∈ Supp(M), we define its supported-neighborhood vector, s⃗v, as

s⃗v(M) =
∑

w∈Supp(M)∩N(v)

Mv,we⃗w,

where e⃗w denotes the vector with 1 in coordinate w and 0 elsewhere. For the matrix in
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Figure 1 we have

s⃗r(M) =2



1
0
0
0
0
0
0


+ (−2)



0
0
1
0
0
0
0


=



2
0

−2
0
0
0
0



s⃗t(M) =(−7)



0
0
1
0
0
0
0


+



0
0
0
0
1
0
0


=



0
0

−7
0
1
0
0



s⃗v(M) =s⃗w(M) =



0
0
0
0
0
0
0


.

In [8] it was shown that

B(F ) :=
⋃

v ̸∈Supp(F )

{e⃗v, s⃗v(A(F ))} \ {⃗0}

is a basis for the rank of the adjacency matrix of F . We show the same result for M ∈
MF,0(F ).

Lemma 3.1. If F is a forest and M ∈ MF,0(F ), then

B(M) :=
⋃

v ̸∈Supp(M)

{e⃗v, s⃗v(M)} \ {⃗0}

is a basis for the rank of M .

Proof. It is easy to see that all columns of M can be written as linear combinations of

B(M) =
⋃

v ̸∈Supp(M)

{e⃗v, s⃗v(M)} \ {⃗0}.

Hence Rank (M) ⊂ Span(B(M)).
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But dim(Null (M)) = dim(Null (A(F ))) by Theorem 2.3. Thus

dim(Rank (M)) = dim(Rank (A(F ))) = |B(F )| = |B(M)|.

Therefore B(M) =
⋃

v ̸∈Supp(M)

{e⃗v, s⃗v(M)} \ {⃗0} is a basis for the rank of M .

Again, we work on a tree instead of a forest, because the rank is the direct sum of the
ranks of the connected components.

Let T be a tree, M ∈ MF,0(T ) and v a vertex of T . For each vertex w let π(v, w) be
second vertex in vPw, where v is the first vertex of the path. We define the v-normalization
of M as the nonsingular diagonal matrix with

C(M,v)
w1,w2

=


1 if w1 = w2 = v,

Mv,π(v,w1) if w1 = w2 ̸= v,

0 otherwise.

For the matrix in Figure 1 we have

C(M,r) =



3 0 0 0 0 0 0
0 1 0 0 0 0 0
0 0 −1 0 0 0 0
0 0 0 −1 0 0 0
0 0 0 0 −1 0 0
0 0 0 0 0 5 0
0 0 0 0 0 0 5



C(M,t) =



3 0 0 0 0 0 0
0 3 0 0 0 0 0
0 0 3 0 0 0 0
0 0 0 1 0 0 0
0 0 0 0 5 0 0
0 0 0 0 0 3 0
0 0 0 0 0 0 3



C(M,v) =



7 0 0 0 0 0 0
0 7 0 0 0 0 0
0 0 7 0 0 0 0
0 0 0 7 0 0 0
0 0 0 0 7 0 0
0 0 0 0 0 1 0
0 0 0 0 0 0 −3


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C(M,w) =



−5 0 0 0 0 0 0
0 −5 0 0 0 0 0
0 0 −5 0 0 0 0
0 0 0 −5 0 0 0
0 0 0 0 −5 0 0
0 0 0 0 0 −5 0
0 0 0 0 0 0 1


.

We define the rank-normalization of M , RM , as the product of C(M,v) over all vertices
v ̸∈ Supp(M).

RM =
∏

v ̸∈Supp(M)

C(M,v).

For the matrix in Figure 1 we have

RM =



−315 0 0 0 0 0 0
0 −105 0 0 0 0 0
0 0 105 0 0 0 0
0 0 0 35 0 0 0
0 0 0 0 175 0 0
0 0 0 0 0 −75 0
0 0 0 0 0 0 −45


.

Lemma 3.2. If T is a tree and M ∈ MF,0(T ), then RM Rank (A(T )) = Rank (M).

Proof. Let v ̸∈ Supp(M). We have

RM s⃗v(A(T )) =
∑

w∈Supp(M)∩N(v)

RM e⃗w

=
∑

w∈Supp(M)∩N(v)

C(M,v)
∏

u̸∈Supp(M),
u̸=v

C(M,u)e⃗w.

But if w ∈ Supp(M) ∩ N(v) and u ̸∈ Supp(M) with u ̸= v, then π(u,w) = π(u, v). Notice
that C(M,u)ew = M(u, π(u, v))e⃗w. Hence

RM s⃗v(A(T )) =
∑

w∈Supp(M)∩N(v)

C(M,v)
∏

u̸∈Supp(M),
u̸=v

C(M,u)e⃗w

=
∑

w∈Supp(M)∩N(v)

C(M,v)
∏

u̸∈Supp(M),
u̸=v

M(u, π(u, v))e⃗w

=
∏

u̸∈Supp(M),
u̸=v

M(u, π(u, v))
∑

w∈Supp(M)∩N(v)

C(M,v)e⃗w.
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On the other hand, if w ∈ N(v), C(M,v)e⃗w = M(v, w)e⃗w. Therefore

RM s⃗v(A(T )) =
∏

u̸∈Supp(M),
u̸=v

M(u, π(u, v))
∑

w∈Supp(M)∩N(v)

C(M,v)e⃗w

=
∏

u̸∈Supp(M),
u̸=v

M(u, π(u, v))
∑

w∈Supp(M)∩N(v)

M(v, w)e⃗w

=
∏

u̸∈Supp(M),
u̸=v

M(u, π(u, v))s⃗v(M).

Hence Span(RM s⃗v(A(T ))) = Span(s⃗v(M)). It is easy to see that Span(RM e⃗v) = Span(e⃗v).
Therefore RM Rank (A(T )) = Rank (M).

If instead we consider a forest, then a diagonal matrix can be obtained by having C
(M,v)
w,w =

1 when v and w are in different connected components. Hence, we have the following.

Corollary 3.3. Given a tree F and a matrix M ∈ MF,0(F ), RM Rank (A(F )) = Rank (M).

The following result is a direct application, because RM is nonsingular.

Corollary 3.4. Let F be a forest, and M,N ∈ MF,0(F ). The vector x⃗ is in Rank (M) if and
only if the vector RN(RM)−1x⃗ is in Rank (N).

4 Conclusion

There is a strong relation between the rank and the null space of a tree-patterned (acyclic)
matrix with diagonal 0, and its underlying tree (forest). It would be interesting to study
what happens when nonzero diagonal entries are allowed, or when a different graph is used.
We conjecture that there will still be a strong relation, but it will not be as straightforward.
For example, we conjecture that having nonzero diagonal entries only in the neighbors of
Supp(F ) should have no effect in the null space of the matrix.
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A Example of Algorithm 1

Consider the following matrix, with coefficients in R,

M =



0 2 0 0 0 0 0 0 0 3 0 0 0 0
5 0 −1 0 0 0 0 0 0 0 0 0 0 0
0 4 0 −6 0 8 0 −16 0 0 0 0 0 0
0 0 2 0 4 0 0 0 0 0 0 0 0 0
0 0 0 3 0 0 0 0 0 0 0 0 0 0
0 0 −3 0 0 0 −4 0 0 0 0 0 0 0
0 0 0 0 0 −2 0 0 0 0 0 0 0 0
0 0 5 0 0 0 0 0 6 0 0 0 0 0
0 0 0 0 0 0 0 7 0 0 0 0 0 0
11 0 0 0 0 0 0 0 0 0 13 7 0 0
0 0 0 0 0 0 0 0 0 −6 0 0 0 0
0 0 0 0 0 0 0 0 0 −5 0 0 4 0
0 0 0 0 0 0 0 0 0 0 0 3 0 5
0 0 0 0 0 0 0 0 0 0 0 0 2 0



.

Replacing every nonzero entry of M with a 1 we obtain the adjacency matrix

A(T ) =



0 1 0 0 0 0 0 0 0 1 0 0 0 0
1 0 1 0 0 0 0 0 0 0 0 0 0 0
0 1 0 1 0 1 0 1 0 0 0 0 0 0
0 0 1 0 1 0 0 0 0 0 0 0 0 0
0 0 0 1 0 0 0 0 0 0 0 0 0 0
0 0 1 0 0 0 1 0 0 0 0 0 0 0
0 0 0 0 0 1 0 0 0 0 0 0 0 0
0 0 1 0 0 0 0 0 1 0 0 0 0 0
0 0 0 0 0 0 0 1 0 0 0 0 0 0
1 0 0 0 0 0 0 0 0 0 1 1 0 0
0 0 0 0 0 0 0 0 0 1 0 0 0 0
0 0 0 0 0 0 0 0 0 1 0 0 1 0
0 0 0 0 0 0 0 0 0 0 0 1 0 1
0 0 0 0 0 0 0 0 0 0 0 0 1 0


of T , the tree in Figure 2, where vertex vi corresponds to row and column i. Thus, M ∈
MR(T ).

We proceed to apply the algorithms from [7] to obtain Supp(T ) and a sparsest basis for
the null space of A(T ). We first obtain a maximum matching of T by matching a leaf
to its neighbor, removing both vertices and repeating the process, until there are no edges
remaining (see Figure 2). Next, we obtain Supp(T ) by taking every vertex that is not incident
to an edge in the maximum matching, and every vertex that can be reached from them by an
even length path alternating between edges not in the matching and edges in the matching.
In this way we get Supp(T ) = {v1, v3, v5, v7, v9, v11, v12, v14} (see Figure 2).
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v1

v2 v10

v3 v11 v12

v4 v6 v8 v13

v5 v7 v9 v14

Figure 2: A tree T , with a maximum matching represented by decorated edges, and where
vertices in Supp(T ) are represented with squares, and vertices not in Supp(T ) are represented
with circles.

We now proceed to look for a sparsest basis for the null space of A(T ). We start by
removing vertices that are neither in Supp(T ) nor adjacent to a vertex in Supp(T ). In the
case of our example, there is no such vertex. Next, we need to root each connected component
at some vertex in Supp(T ). We do so with v1. To obtain the basis we are going to obtain a
different maximum matching. To do this we are going to give two weights to our remaining
vertices, wtc and wtp. We begin by giving each leaf ℓ, weight wtc(ℓ) = 1. Let C(v) denote
the set of children of v (i.e., the set of vertices adjacent to v that are further from the root
than v). A non-leaf vertex v is assigned wtc once every vertex in C(v) has been assigned a
wtc. For a vertex v not in Supp(T ), wtc(v) = min{wtc(w) | w ∈ C(v)}. On the other hand,
for a vertex v in Supp(T ), wtc(v) = 1 +

∑
w∈C(v) wtc(w). After this process the weights we

have are

wtc(v5) =wtc(v7) = wtc(v9) = wtc(v11) = wtc(v14) = 1

wtc(v4) =wtc(v6) = wtc(v8) = wtc(v13) = 1

wtc(v3) =4

wtc(v12) =2

wtc(v2) =4

wtc(v10) =1

wtc(v1) =6,

(see Figure 3). Once we have assigned a weight wtc to the root, we start assigning wtp,
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v1

4

v2

1

v10

4
v3

1
v11

2
v12

1
v4

1
v6

1
v8

1
v13

1
v5

1
v7

1
v9

1
v14

6

4 1

4 1 2

1 1 1 1

1 1 1 1

Figure 3: The tree T from Figure 2 with the assignment of wtc.

moving down through the tree again. If v is the root, we keep wtc(v) = wtp(v). For a vertex
w, let pw be its parent. I.e., pw = v if and only if w ∈ C(v). Once wtp(pw) has been assigned,
we are ready to assign wtp to w. For w not in Supp(T ), if wtp(pw)− wtc(w) < wtc(w), then
wtp(w) = wtp(pw) − wtc(w), and the edge in the matching containing w is replaced with
the edge {w, pw} (this replacement is the reason why we assign the weights). Otherwise,
wtp(w) = wtc(w). For w in Supp(T ), wtp(w) = wtc(w) + wtc(pw). Once the process is done
for T , the values for wtp are

wtc(v1) =6

wtc(v2) =2

wtc(v10) =1

wtc(v3) =6

wtc(v12) =3

wtc(v4) =wtc(v6) = wtc(v8) = wtc(v13) = 1

wtc(v5) =wtc(v7) = wtc(v9) = wtc(v11) = wtc(v14) = 2,

and the edge {v2, v3} in the matching is changed for the edge {v1, v2} (see Figure 4). To
obtain the basis, we form vectors as follows. Take a vertex v that is in none of the edges
of the matching. Start by placing a 1 in the coordinate of vertex v, i.e., x⃗v = 1. If the
edge {u,w} is in the matching, x⃗u has not been assigned yet, and x⃗v ̸= 0 for some vertex
v adjacent to w, then let x⃗u = −x⃗v. Once this process stops, let x⃗w = 0 for every vertex
w whose coordinate was not assigned. In this way, we form a vector x⃗ starting with v3, by

54



Jaume et al./ American Journal of Combinatorics 2 (2023) 39–58

6

v1

4

v2

1

v10

4
v3

1
v11

2
v12

1
v4

1
v6

1
v8

1
v13

1
v5

1
v7

1
v9

1
v14

6

2 1

6 2 3

1 1 1 1

2 2 2 2

Figure 4: The tree T from Figure 2 with the assignment of wtp, where the maximummatching
was changed.

setting

x⃗v3 = 1

x⃗v1 = x⃗v5 = x⃗v7 = x⃗v9 = −1

x⃗v11 = 1,

and x⃗w = 0 for all remaining coordinates. Similarly, starting with v12, we form vector y⃗ with

y⃗v12 = 1

y⃗v11 = y⃗v14 = −1

and y⃗w = 0 for all remaining coordinates. Thus,

BT = {(−1, 0, 1, 0,−1, 0,−1, 0,−1, 0, 1, 0, 0, 0)T , (0, 0, 0, 0, 0, 0, 0, 0, 0, 0,−1, 1, 0,−1)T}

is a sparsest basis for the null space of A(T ).
Now, for each connected component with at least one vertex in Supp(A(T )), we need to

choose a vertex in Supp(A(T )). As we have just one connected component, we let v1 be the
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vertex. Applying the properties given in Lemma 2.2, we obtain

D(M,v1)
v1,v1

=1

D(M,v1)
v2,v2

=
1

5
D(M,v1)

v10,v10
=

1

11

D(M,v1)
v3,v3

=− 1

5
D(M,v1)

v12,v12
=

7

11
D(M,v1)

v11,v11
=
13

11

D(M,v1)
v4,v4

=− 1

10
D(M,v1)

v13,v13
=

7

33

D(M,v1)
v5,v5

=− 2

5
D(M,v1)

v14,v14
=
35

33

D(M,v1)
v6,v6

=
1

15
D(M,v1)

v8,v8
=− 1

25

D(M,v1)
v7,v7

=− 4

15
D(M,v1)

v9,v9
=− 6

25

and

(
D(M,v1)

)−1
=



1 0 0 0 0 0 0 0 0 0 0 0 0 0
0 5 0 0 0 0 0 0 0 0 0 0 0 0
0 0 −5 0 0 0 0 0 0 0 0 0 0 0
0 0 0 −10 0 0 0 0 0 0 0 0 0 0
0 0 0 0 −5

2
0 0 0 0 0 0 0 0 0

0 0 0 0 0 15 0 0 0 0 0 0 0 0
0 0 0 0 0 0 −15

4
0 0 0 0 0 0 0

0 0 0 0 0 0 0 −25 0 0 0 0 0 0
0 0 0 0 0 0 0 0 −25

6
0 0 0 0 0

0 0 0 0 0 0 0 0 0 11 0 0 0 0
0 0 0 0 0 0 0 0 0 0 11

13
0 0 0

0 0 0 0 0 0 0 0 0 0 0 11
7

0 0
0 0 0 0 0 0 0 0 0 0 0 0 33

7
0

0 0 0 0 0 0 0 0 0 0 0 0 0 33
35



,

and

BM =(D(M,v1))−1BT

=

{ (
−1, 0,−5, 0, 5

2
, 0, 15

4
, 0, 25

6
, 0, 11

13
, 0, 0, 0

)T
,(

0, 0, 0, 0, 0, 0, 0, 0, 0, 0,−11
13
, 11

7
, 0,−33

35

)T
}

is a sparsest basis for Null (M).
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