
American Journal of Combinatorics Research Note
Volume 2 (2023), Pages 72–78

Rank of signed cacti

Zoran Stanić
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Abstract

A signed cactus Ġ is a connected signed graph such that every edge belongs to at
most one cycle. The rank of Ġ is the rank of its adjacency matrix. In this paper we
prove that

k∑
i=1

ni − 2k ≤ rank(Ġ) ≤
k∑

i=1

ni − 2t+ 2s,

where k is the number of cycles in Ġ, n1, n2, . . . , nk are their lengths, t is the number
of cycles whose rank is their order minus two, and s is the number of edges outside
cycles. Signed cacti attaining the lower bound are determined.

1 Introduction

A signed graph Ġ is a finite, undirected graph without loops or parallel edges, in which every
edge has been declared positive or negative. The adjacency matrix AĠ is an n × n matrix
whose (i, j)-entry is 1 if the vertices i and j are joined by a positive edge, −1 if they are
joined by a negative edge, and 0 if they are non-adjacent. The order n of Ġ is the number
of vertices of Ġ. The rank rank(Ġ) of Ġ is the rank of AĠ.

A signed cactus (also known as a tree-like signed graph) Ġ is a connected signed graph
such that every pair of induced cycles (if any) has at most one common vertex; equivalently,
every edge of Ġ belongs to at most one cycle.

Inspired by the result of Chen and Tian [2] that offers a lower bound for the rank of the
skew adjacency matrix of an oriented cactus, in this contribution we prove a similar lower
bound for the rank of a signed cactus, along with an upper bound. Signed cacti attaining
the lower bound are determined, as well. Our results can be seen in the light of recently
established links between the spectrum of an oriented graph and the skew spectrum of a
related signed graph (with a precise meaning of ‘related’) [5]. According to these links, there
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Stanić/ American Journal of Combinatorics 2 (2023) 72–78

is a strong relationship between the theory of skew spectra of oriented graphs and the theory
of spectra of signed graphs, and therefore the similarity between the lower bound of [2] and
the lower bound obtained in this paper is unsurprising.

In the next section we go straight to the results.

2 Results

All the necessary terminology and notation are given in this paragraph. We write I, O and 0
to denote the identity matrix, the all-zero matrix and the all-zero vector, respectively. For a
vertex v of a signed graph Ġ, Ġ− v denotes the induced subgraph obtained by removing v.
Similarly, if Ḣ is an induced subgraph of Ġ, then Ġ − Ḣ denotes the induced subgraph
obtained by removing the vertices of Ḣ. In this spirit, Ḣ + v is an induced subgraph whose
vertex set is the union of the vertex set of Ḣ and a single vertex v. A cut-vertex of a
connected signed graph is a vertex whose removal results in a disconnected signed graph. A
pendant vertex is a vertex of degree one. A cycle in Ġ is even (resp. odd) if its order is even
(odd). A cycle is positive if the product of its edge signs is 1. Otherwise, it is negative.

Some known results are needed.

Lemma 2.1 (cf. [1, Theorem 3]). For a vertex v of a signed graph Ġ, rank(Ġ − v) ≤
rank(Ġ) ≤ rank(Ġ− v) + 2.

The next results reveals a situation in which the previous upper bound is attained.

Lemma 2.2 ([3]). Let v be a cut-vertex of a connected signed graph Ġ and Ḣ a disjoint union
of some connected components of Ġ − v. If rank(Ḣ + v) = rank(Ḣ) + 2, then rank(Ġ) =
rank(Ġ− v) + 2.

We include a sketched proof, while for details we refer the reader to [3]. If Ḣ includes all
the components of Ġ− v, there is nothing to prove. Otherwise, we write

AĠ =

AḢ x O
xᵀ 0 yᵀ

O y AĠ−v−Ḣ

 , (2.1)

and observe that, under the assumption of the lemma, x is not in the range (i.e., the column

space) of AḢ and a basis of the 2 × 2 top-left block of AĠ is spanned by

(
ci
0

)
,

(
x
0

)
and(

0
1

)
, where {ci} is the basis of the column space of AḢ . Then

rank(Ġ) = rank(Ḣ) + 1 + rank

0 O
1 yᵀ

0 AĠ−v−Ḣ

 = rank(Ḣ) + 2 + rank(Ġ− v − Ḣ),

which gives the desired assertion, as Ġ − v is a disjoint union of Ḣ and Ġ − v − Ḣ, with
rank(Ġ− v) = rank(Ḣ) + rank(Ġ− v − Ḣ).

We proceed with the following lemma.
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Lemma 2.3. Let v be a cut-vertex of a connected signed graph Ġ and Ḣ a disjoint union
of some connected components of Ġ − v. If rank(Ḣ + v) = rank(Ḣ), then rank(Ġ) =
rank(Ḣ) + rank(Ġ− Ḣ).

Proof. The result follows directly if Ḣ includes all the components of Ġ− v, i.e., Ḣ ∼= Ġ− v.
Otherwise, if rank(Ḣ + v) = rank(Ḣ), then the vector x of (2.1) belongs to the range of AḢ ,
giving AḢz = x, for z 6= 0. In addition, xᵀz = 0, as otherwise yields rank(Ḣ) < rank(Ḣ+v).
With consistent submatrix sizes, this gives the following rank preserving transformation
of AĠ:  I −z O

0ᵀ 1 0ᵀ

O 0 I

ᵀ

· AĠ ·

 I −z O
0ᵀ 1 0ᵀ

O 0 I

 =

 I 0 O
−zᵀ 1 0ᵀ

O 0 I

AḢ x O
xᵀ 0 yᵀ

O y AĠ−v−Ḣ

 I −z O
0ᵀ 1 0ᵀ

O 0 I

 =

AḢ 0 O
0ᵀ 0 yᵀ

O y AĠ−v−Ḣ

 ,

which leads to the desired assertion.

A similar proof technique can be found in [2]. We continue with the following theorem,
a crucial ingredient for the proof of the forthcoming Theorem 2.6.

Theorem 2.4. Let v be a cut-vertex of a connected signed graph Ġ and Ḣ a disjoint union
of some connected components of Ġ− v. The following statements hold true.

(i) If rank(Ḣ + v) = rank(Ḣ) + 2, then rank(Ḣ) + rank(Ġ− Ḣ) ≤ rank(Ġ) ≤ rank(Ḣ) +
rank(Ġ− Ḣ) + 2.

(ii) If rank(Ḣ+v) = rank(Ḣ)+1, then rank(Ḣ)+rank(Ġ−Ḣ)−1 ≤ rank(Ġ) ≤ rank(Ḣ)+
rank(Ġ− Ḣ) + 1.

Proof. As in the previous proof, the case Ḣ ∼= Ġ − v is resolved directly. We assume that
Ḣ 6∼= Ġ−v, and write Ḟ for the signed graph obtained by removing the vertex v from Ġ−Ḣ.
Since Ġ− v is a disjoint union of Ḣ and Ḟ , we have

rank(Ġ− v) = rank(Ḣ) + rank(Ḟ ). (2.2)

Due to Lemma 2.1, we have

rank(Ḟ ) ≤ rank(Ġ− Ḣ) ≤ rank(Ḟ ) + 2. (2.3)

(i): For rank(Ḣ+v) = rank(Ḣ)+2, Lemma 2.2 in conjunction with (2.2) yields rank(Ġ) =
rank(Ḣ) + rank(Ḟ ) + 2. Employing (2.3), we obtain rank(Ḣ) + rank(Ġ− Ḣ) ≤ rank(Ġ) ≤
rank(Ḣ) + rank(Ġ− Ḣ) + 2, as desired.

(ii): We assume that rank(Ḣ + v) = rank(Ḣ) + 1 and consider the three possibilities for
rank(Ġ− Ḣ).
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First, if rank(Ġ− Ḣ) = rank(Ḟ ) + 2, by substituting Ḟ for Ḣ in Lemma 2.2, we obtain
rank(Ġ) = rank(Ġ − v) + 2 = rank(Ḟ ) + rank(Ḣ) + 2, where the latter equality follows
from (2.2). This gives

rank(Ġ) = rank(Ḣ) + rank(Ġ− Ḣ). (2.4)

Let rank(Ġ − Ḣ) = rank(Ḟ ) + 1. From Lemma 2.1 and (2.2), we obtain rank(Ḣ) +
rank(Ḟ ) ≤ rank(Ġ) ≤ rank(Ḣ) + rank(Ḟ ) + 2, which together with the previous equality
leads to

rank(Ḣ) + rank(Ġ− Ḣ)− 1 ≤ rank(Ġ) ≤ rank(Ḣ) + rank(Ġ− Ḣ) + 1. (2.5)

Finally, assume that rank(Ġ − Ḣ) = rank(Ḟ ). By substituting Ḟ for Ḣ in Lemma 2.3, we
arrive at rank(Ġ) = rank(Ḣ + v) + rank(Ḟ ) = rank(Ḣ) + rank(Ḟ ) + 1, where the second
equality follows from the assumption of item (ii) of this statement. It follows

rank(Ġ) = rank(Ḣ) + rank(Ġ− Ḣ) + 1. (2.6)

The desired inequalities follow by taking into account (2.4)–(2.6).

The next result is needed, as well. It can be proved directly, but we also provide some
references.

Lemma 2.5 ([3, 4]). The following statements hold true.

(i) For a signed path Ṗn of order n,

rank(Ṗn) =

{
n if n is even,

n− 1 if n is odd.

(ii) For a signed cycle Ċn of order n,

rank(Ċn) =


n− 2 if either n ∼= 0 (mod 4) and Ċn is positive or

n ∼= 2 (mod 4) and Ċn is negative,
n otherwise.

Here is the main result of this paper.

Theorem 2.6. Let Ġ be a signed cactus with k cycles of lengths n1, n2, . . . , nk, such that
exactly t of them are even and positive (resp. negative) if their order is (is not) divisible by 4.
Assume that exactly s edges do not belong to any cycle. Then

k∑
i=1

ni − 2k ≤ rank(Ġ) ≤
k∑

i=1

ni − 2t + 2s.
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Proof. For k = 0, the lower bound reduces to 0, and the upper bound reduces to 2(n − 1),
where n is the order of Ġ, and so both inequalities hold. Let k ≥ 1.

We first consider the lower bound. Observe that the existence of pendant vertices leaves
the bound unchanged and may increase the rank, and thus we assume that Ġ has no pendant
vertices. For k = 1, the result follows from Lemma 2.5(ii). We proceed by the induction
argument, i.e., we assume that the statement holds for every signed cactus with k−1 cycles,
and consider Ġ having k (k ≥ 2) cycles. Let Ċnk

be a cycle with exactly one vertex, say
v, of degree ≥ 3. Clearly, such a cycle exists under the assumption that Ġ has no pendant
vertices.

If rank(Ċnk
) = nk− 2, then by Lemma 2.5(i) we have rank(Ċnk

− v) = nk− 2, as Ċnk
− v

is a path of an odd order. From Lemma 2.3 with Ċnk
− v in the role of Ḣ, we obtain

rank(Ġ) = rank(Ċnk
− v) + rank(Ġ− Ċnk

+ v), which under the induction hypothesis leads

to rank(Ġ) ≥ nk − 2 +
∑k−1

i=1 ni − 2(k − 1) =
∑k

i=1 ni − 2k.
In the light of Lemma 2.5(i), rank(Ċnk

) = nk implies

rank(Ċnk
− v) =

{
nk − 2 if nk is even,
nk − 1 if nk is odd.

For nk even, Theorem 2.4(i) leads to rank(Ġ) ≥ rank(Ċnk
− v) + rank(Ġ − Ċnk

+ v) =
nk − 2 + rank(Ġ − Ċnk

+ v). After employing the induction hypothesis, we arrive at the
desired inequality.

For nk odd, Theorem 2.4(ii) leads to rank(Ġ) ≥ rank(Ċnk
− v) + rank(Ġ− Ċnk

+ v)− 1 =
nk − 2 + rank(Ġ− Ċnk

+ v), and the result follows.
Consider now the upper bound. For k = 1, the result follows from Lemma 2.5(ii) and

Lemma 2.1. Indeed, the rank of the unique cycle is given in the former lemma, and the latter
one tells us that adding a pendant vertex increases the rank by at most 2. We proceed as in
the previous case and assume that Ġ has k (k ≥ 2) cycles, along with the hypothesis that
the statement holds for every signed cactus with k − 1 cycles. Suppose first that Ġ has a
cycle, say Ċnk

, with exactly one vertex, say again v, of degree ≥ 3.
If rank(Ċnk

) = nk − 2 (which occurs exactly if Ċnk
is one of the t cycles given in the

statement formulation), then by virtue of Lemma 2.3, we obtain rank(Ġ) = rank(Ċnk
− v) +

rank(Ġ−Ċnk
+v), and then Lemma 2.5(i) yields rank(Ġ) ≤ nk−2+

∑k−1
i=1 ni−2(t−1)+2s =∑k

i=1 ni − 2t + 2s.
If rank(Ċnk

) = nk, the desired inequality is obtained by a slight modification of the proof
for the lower bound; the only difference is that now we use the upper bounds of Theorem 2.4.

If Ċnk
has trees attached at its vertices, which contain r edges in total, then rank(Ġ) ≤∑k

i=1 ni− 2t+ 2(s− r) + 2r, as follows by multiple application of Lemma 2.5 to the vertices
of trees. The latter inequality concludes the entire proof.

We reformulate the previous result to the following corollary suggested by the referee.

Corollary 2.7. Let Ġ be a signed cactus of Theorem 2.6. Then

m− s− 2k ≤ rank(Ġ) ≤ m− 2t + s,

where m is the number of edges of Ġ.
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Figure 1: Examples of signed cacti attaining the upper bound of Theorem 2.6. In these
examples, all edges are positive.

This result, of course, follows from m =
∑k

i=1 ni + s. Consider now the equality in the
lower bound of Theorem 2.6.

Theorem 2.8. The lower bound of Theorem 2.6 is attained if and only if either Ġ is an
isolated vertex or each of its edges belongs to a cycle, and every cycle is even and positive
(resp. negative) if its order is (is not) divisible by 4.

Proof. Assume first that Ġ is as in the statement formulation. If it consists of a single
vertex, then the bound is obviously attained. In the remaining case, we again proceed with
the induction. For k = 1, Ġ is an even cycle and the result follows from Lemma 2.5(ii). If
Ċnk

is a cycle with exactly one vertex, say v, of degree ≥ 3, then rank(Ċnk
) = rank(Ċnk

− v)
(by Lemma 2.5), and the result follows by employing Lemma 2.3 (with Ċnk

− v in the role
of Ḣ) and the induction hypothesis.

Assume now that the equality is attained. We first eliminate te possibility that Ġ contains
an odd cycle. If Ċn1 is such a cycle, then we have rank(Ċn1) = n1. We proceed to build Ġ by a
successive addition of pendant vertices or cycles. Adding a vertex does not decrease the rank,
and adding the entire cycle of length q increases it by at least q−2, as follows by Theorem 2.4.
Therefore, the rank of Ġ is at least n1+

∑k
i=2 ni−2(k−1) =

∑k
i=1 ni−2(k−1) >

∑k
i=1 ni−2k.

The remainder of the proof follows from Theorem 2.6(i) of [5] which states that the rank
of a bipartite signed graph equals the rank of an associated oriented graph (with a precise
meaning of ‘associated’) and Theorem 1.2 of [2] stating that the corresponding lower bound
for oriented graphs is attained if and only if they are associated with signed graphs given in
the formulation of this statement.

Observe that the upper bound of Theorem 2.6 may be trivial in the sense that is larger
than the order of Ġ. For t = 0, since every vertex belonging to a cycle in Ġ is counted at
least once in the sum of the upper bound, and every vertex not belonging to any cycle is
incident with at least one edge not belonging to cycles, we obtain that the upper bound is
not less than the order of Ġ, and Ġ attains the bound if and only if it is an isolated vertex
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or a signed cycle; since t = 0, this cycle has restrictions according to the theorem. For t ≥ 1,
we got a rather complicated situation, and the question of equality remains a challenging
problem. Our experiments show that, for example, two infinite families of signed graphs
illustrated in Fig. 1 attain the bound. The same holds if we remove pendant vertices form
the first one. Further examples are constructed by changing lengths of cycles with a caveat
that their rank must remain unchanged. This in particular means that the triangle of the
first example can be replaced by a negative cycle of length 4k + 2 (k ≥ 1).
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