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Abstract

Let G be a bipartite graph with adjacency matrix A(G). The characteristic poly-
nomial ϕ(G, x) = det(xI−A(G)) and the permanental polynomial π(G, x) = per(xI−
A(G)) are both graph invariants used to distinguish graphs. For bipartite graphs, we
define the modified characteristic polynomial, which is obtained by changing the signs
of some of the coefficients of ϕ(G, x). For 4k-intercyclic bipartite graphs, i.e., those for
which the removal of any 4k-cycle results in a C4k-free graph, we provide an expression
for π(G, x) in terms of the modified characteristic polynomial of the graph and its sub-
graphs. Our approach is purely combinatorial in contrast to the Pfaffian orientation
method found in the literature to compute the permanental polynomial.

1 Introduction and preliminaries

We consider simple and undirected graphs. Let G be a graph with the vertex set V (G) =
{v1, v2, . . . , vn}. The adjacency matrix A(G) = (ai,j) of a graph G is defined such that
ai,j = 1 if vi and vj are adjacent and 0 otherwise where i, j ∈ {1, 2, . . . , n}. The determinant
and the permanent of A(G), are defined as

det(A(G)) =
∑
σ∈Sn

sgn(σ)
n∏

i=1

ai,σ(i) and per(A(G)) =
∑
σ∈Sn

n∏
i=1

ai,σ(i),

respectively, where Sn is the set of all permutations of the set {1, 2, . . . , n} and sgn(σ) is the
signature of the permutation σ. While the determinant can be computed in polynomial time
using the Gaussian elimination method, and the fastest known algorithm runs in O(n2.371552)
time [3, 19], computing the permanent is notoriously difficult, as it is #P-complete [18]. The
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“Permanent vs. Determinant Problem” about symbolic matrices in computational complex-
ity theory is as follows: “Can we express the permanent of a matrix as the determinant of
a (possibly polynomially larger) matrix?” For an upper bound on the size of the larger ma-
trix, see [10], and for a survey on lower bounds, see [1]. The problem “Given a (0, 1)-matrix
A, under what conditions, changing the sign of some the nonzero entries yields a matrix
B such that per(A) = det(B)?” is famously known as “Polya Permanent Problem,” [15]
and it is equivalent to twenty-three other problems listed in [13]. Immanants are matrix
functions that generalize determinant and permanent, and their complexity dichotomy was
also recently studied [7].

The characteristic polynomial and the permanental polynomial of graph G on n vertices
are univariate polynomials defined as

ϕ(G, x) = det(xI − A(G)) and π(G, x) = per(xI − A(G)),

respectively, where I is the identity matrix of order n. The characteristic and the perma-
nental polynomials are graph invariants, and they can be used to distinguish graphs towards
Graph Isomorphism Problem [17]. But the permanental polynomial is not studied in great
detail as compared to the characteristic polynomial, probably due to its computational dif-
ficulty. Some computational evidence suggests that the permanental polynomial is better
than the characteristic polynomial while distinguishing graphs [8, 12]. We are interested in
finding ways to compute the permanental polynomial efficiently; one way to do that is by
expressing the permanental polynomial in terms of the characteristic polynomial. For an
excellent survey on the permanental polynomial, we refer to [11].

Let

ϕ(G, x) =
n∑

i=0

aix
n−i and π(G, x) =

n∑
i=0

bix
n−i.

The interpretation of these coefficients is given as

ai =
∑
Ui

(−1)p(Ui)2c(Ui) [16] , bi = (−1)i
∑
Ui

2c(Ui) [14] , (1.1)

where the summation is taken over all the Sachs subgraphs Ui (subgraphs whose components
are either cycles or edges) of G on i vertices, p(Ui) denotes the number of components in
Ui, and c(Ui) denotes the number of components in Ui that are cycles. It is easy to see the
following.

Proposition 1.1. [5, 6] A graph G is bipartite if and only if ai = bi = 0 for each odd i.

Hence, for a bipartite graph G, we have

ϕ(G, x) =
∑

i=0,2,4,...

aix
n−i and π(G, x) =

∑
i=0,2,4,...

bix
n−i. (1.2)

Defining fi = bi − (−1)i/2ai for each nonnegative even integer i, we introduce a modified
characteristic polynomial and also a new graph polynomial for bipartite graphs as

ϕp(G, x) =
∑

i=0,2,4,...

(−1)i/2aix
n−i and f(G, x) =

∑
i=0,2,4,...

fix
n−i,
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respectively, such that we have

π(G, x) = ϕp(G, x) + f(G, x). (1.3)

We denote a cycle of length k by Ck. For each positive integer k, we refer to a C4k by a
4k-cycle. A graph is called C4k-free if it does not contain a 4k-cycle for all positive integers
k. A graph is called 4k-intercyclic if it does not contain two vertex-disjoint 4k-cycles (these
4k-cycles could be of different length). Equivalently, after removal of the vertices of any
4k-cycle from a 4k-intercyclic graph, the resultant graph is C4k-free (see Figure 1 for an
example).

Figure 1: Example of a 4k-intercyclic bipartite graph.

In 1985, Borowiecki proved the following.

Theorem 1.2. [5] Let G be a bipartite graph with the spectrum {λ1, λ2, . . . , λn}. Then, G
is C4k-free if and only if its per-spectrum is {iλ1, iλ2, . . . , iλn}.1

By inspecting the proof of this theorem, we notice that a bipartite graph G is C4k-free if
and only if π(G, x) = ϕp(G, x) (see Corollary 2.4). As a result, the permanental polynomial
of C4k-free bipartite graphs can be computed directly through the modified characteristic
polynomial. Yan and Zhang, in 2004, found that the permanental polynomial of a larger class
of bipartite graphs can be computed using the characteristic polynomial of some oriented
graph. They proved the following.

Theorem 1.3. [20] Let G be a bipartite graph with n vertices containing no subgraph that
is an even subdivision of K2,3. Then there exists an orientation Ge of G such that π(G, x) =
det(xI − A(Ge)), where A(Ge) denotes the skew adjacency matrix of Ge.

Later Zhang and Li, in 2012, proved the converse of this statement.

Theorem 1.4. [21] There exists an orientation Ge of a bipartite graph G such that π(G, x) =
det(xI − A(Ge)) if and only if G contains no even subdivision of K2,3.

For the definition of an even subdivision of a graph, see [20, 21]. Zhang and Li also
show that bipartite graphs that do not contain an even subdivision of K2,3 are planar and
admit Pfaffian orientation. They also give characterization and recognition of such graphs,
which leads to a polynomial time algorithm to compute the permanental polynomial of such
bipartite graphs. Next, we reformulate Theorem 1.4.

1The spectrum and the per-spectrum of a graph G are the multiset of all roots of its characteristic
polynomial and the permanental polynomial, respectively, and i is an imaginary unit.
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Theorem 1.5. There exists an orientation Ge of a graph G such that π(G, x) = det(xI −
A(Ge)) if and only if G is a bipartite graph containing no even subdivision of K2,3.

Proof. Suppose that there is an orientation Ge such that π(G, x) = det(xI − A(Ge)) holds.
It is enough to show that G is bipartite. The conclusion of the theorem then follows by
Theorem 1.4. Since the skew-adjacency matrix A(Ge) is skew-symmetric, it has purely
imaginary eigenvalues. Hence, the permanental polynomial can be expressed as π(G, x) =
(x − iλ1)(x − iλ2) . . . (x − iλn) for some real numbers λ1, λ2, . . . , λn. When k is odd, the
imaginary unit i is a factor of the coefficient bk of xn−k. Since the coefficients of π(G, x)
must be real, it follows that bk = 0 for all odd k, and by Proposition 1.1, G is bipartite.

Theorem 1.5 suggests that the orientation approach in computing the permanental poly-
nomial only works for the class of bipartite graphs that do not contain an even subdivision
of K2,3. In this article, we give a formula to compute π(G, x) for the class of 4k-intercyclic
bipartite graphs (a superset of the class of C4k-free bipartite graphs). This is done by ex-
pressing f(G, x) in terms of the modified characteristic polynomial of the subgraphs of G.
Our approach is combinatorial rather than based on Pfaffian orientation. Note that the class
of 4k-intercyclic bipartite graphs is different from and not a subset of the class of bipartite
graphs that do not contain an even subdivision of K2,3.

We would also like to mention that our result seem to be in the same spirit as Polya’s
scheme completed by Galluccio and Loebl in 1999. They proved that the generating function
of the perfect matchings of a graph of genus g may be written as a linear combination of 4g

Pfaffians, and as a consequence obtained the following result.

Theorem 1.6. [9] Let A be a square matrix. Then per(A) may be expressed as a linear
combination of terms of the form det(Ai), i = 1, . . . , 4g, where each Ai is obtained from A
by changing the sign of some entries and g is the genus of the bipartite graph corresponding
to the biadjacency matrix A.

2 Main result and application

Theorem 2.1. Let G be a 4k-intercyclic bipartite graph. Then,

π(G, x) = ϕp(G, x) + 4
∑

R∈C4k(G)

ϕp(G\R, x),

where C4k(G) denotes the set of all 4k-cycles in G.

To prove this theorem, we need the following lemma.

Lemma 2.2. Let G be a bipartite graph. Then, for each nonnegative even integer i, we have

fi =
∑

j=1,3,5,...

2j+1
∑

Ui containing
exactly j 4k-cycles

2t(Ui),

where Ui denotes a Sachs subgraph on i vertices, and t(Ui) is the number of (4k + 2)-cycles
in Ui.
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Proof of Lemma 2.2. In a bipartite graph, there can be two types of cycles: 4k-cycles or
(4k + 2)-cycles. Let Ui be any Sachs subgraph on i vertices, and s(Ui) and t(Ui) be the
number of 4k-cycles and (4k + 2)-cycles in it respectively. Then, Ui can be expressed as

Ui = {C4k1 ∪ · · · ∪ C4ks(Ui)
} ∪ {C4l1+2 ∪ · · · ∪ C4lt(Ui)

+2} ∪ {K2 ∪ · · · ∪K2}︸ ︷︷ ︸
r(Ui)−times

,

such that p(Ui) = s(Ui) + t(Ui) + r(Ui), c(Ui) = s(Ui) + t(Ui) and

i = 4(k1 + · · ·+ ks(Ui)) + 4(l1 + · · ·+ lt(Ui)) + 2(t(Ui) + r(Ui)).

Check that s(Ui) + t(Ui) + r(Ui) ≡ i/2 + s(Ui) (mod 2). Using this fact, the coefficients of
the characteristic polynomial and the permanental polynomial given in Equation 1.1 can be
written as

(−1)i/2ai =
∑
Ui

(−1)s(Ui)2s(Ui)+t(Ui) and bi =
∑
Ui

2s(Ui)+t(Ui),

respectively ((−1)i = 1 since i is even). Since fi = bi − (−1)i/2ai, we get

fi =
∑
Ui

(
1− (−1)s(Ui)

)
2s(Ui)+t(Ui) =

∑
Ui containing an odd
number of 4k-cycles

2s(Ui)+12t(Ui) (2.1)

=
∑

j=1,3,5,...

2j+1
∑

Ui containing
exactly j 4k-cycles

2t(Ui).

Note that the contribution in Equation 2.1 of the Sachs subgraphs in which we have exactly
an even number of 4k-cycles vanishes.

Proof of Theorem 2.1. Since G is 4k-intercyclic, the subgraph G\R is C4k-free for any R ∈
C4k(G). Similarly, any Sachs subgraph Ui of G can contain at most one 4k-cycle, that is,
s(Ui) ≤ 1. Using Lemma 2.2, we have

fi = 4
∑

Ui containing
exactly one 4k-cycle

2t(Ui) = 4
∑

R∈C4k(G)

∑
Ui

containing R

2t(Ui)

for each nonnegative even integer i. For any fixed R ∈ C4k(G), there is a one-to-one cor-
respondence between the Sachs subgraphs in G containing R and the Sachs subgraphs in
G\R. To see this, consider a Sachs subgraph Ui in G containing R. Let lR = i− |V (R)| and
WlR = Ui\R be the unique subgraph of G\R corresponding to Ui. Since G is 4k-intercyclic,
removing R ensures that WlR is a Sachs subgraph of G\R since both G\R and Ui\R do not
contain 4k-cycles. Conversely, adding R back to a Sachs subgraph WlR in G\R uniquely re-
constructs a corresponding subgraph Ui in G. This establishes a one-to-one correspondence.
Moreover, the number of cycles in WlR is the same as the number (4k + 2)-cycles in Ui, i.e.,
c(WlR) = t(Ui). As a result, we have

fi = 4
∑

R∈C4k(G)

∑
WlR

2c(WlR
).
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Now consider the polynomial

f(G, x) =
∑

i=0,2,4,...

fix
n−i = 4

∑
i=0,2,4,...

∑
R∈C4k(G)

∑
WlR

2c(WlR
)xn−i

= 4
∑

R∈C4k(G)

∑
lR=0,2,4,...

∑
WlR

2c(WlR
)x(n−|V (R)|)−lR

= 4
∑

R∈C4k(G)

π(G\R, x),

where the second last step follows from the rearrangement of sums, and the last step by
Equation 1.1, 1.2 and the fact that G\R is a C4k-free bipartite graph on n−|V (R)| vertices.
By Equation 1.3, we conclude

π(G, x) = ϕp(G, x) + 4
∑

R∈C4k(G)

π(G\R, x).

SinceG\R is C4k-free, the application of this expression to it leads to π(G\R, x) = ϕp(G\R, x)
proving the theorem.

Example 2.3. Consider the 4k-intercyclic graph G shown in Figure 1. It contains three
4-cycles and two 8-cycles, and removal of each of them from the graph yields the following
subgraphs: P5 ∪ K1, P4 ∪ K2, P4 ∪ K1 ∪ K1, K2 and K1 ∪ K1, respectively. Then, using
Theorem 2.1,

π(G, x) = ϕp(G, x) + 4(ϕp(P5 ∪K1, x) + ϕp(P4 ∪K2, x) + ϕp(P4 ∪K1 ∪K1, x)

+ϕp(K2, x) + ϕp(K1 ∪K1, x)).

We need to do the following computations: ϕp(G, x) = x10 + 12x8 + 40x6 + 47x4 + 18x2

+ 1, ϕp(P5 ∪ K1, x) = x6 + 4x4 + 3x2, ϕp(P4 ∪ K2, x) = x6 + 4x4 + 4x2 + 1, ϕp(P4 ∪
K1 ∪ K1, x) = x6 + 3x4 + x2, ϕp(K2) = x2 + 1, ϕp(K1 ∪ K1, x) = x2. Hence, we get
π(G, x) = x10 + 12x8 + 52x6 + 91x4 + 58x2 + 9. Note that Theorem 1.3 and 1.4 are not
applicable for this graph G as it contains K2,3.

The following corollary shows that Theorem 2.1 is a generalization of Borowiecki’s proof
idea for computational purposes at least.

Corollary 2.4. [5] A bipartite graph G is C4k-free if and only if π(G, x) = ϕp(G, x).

Proof. The forward implication easily follows from Theorem 2.1. Suppose π(G, x) = ϕp(G, x)
holds, then from Equation 2.1, we have

fi =
∑

Ui with an odd
number of 4k-cycles

2s(Ui)+12t(Ui) = 0,

for each i. Suppose, on the contrary, that G contains a 4k-cycle for some k. Then, there
exists a Sachs subgraph U4k = C4k, and it contains an odd number of 4k-cycles. Hence,
f4k ̸= 0, and we get a contradiction which concludes that G is C4k-free.
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By Theorem 2.1, the computation of permanental polynomial of a 4k-intercyclic bipartite
graph requires listing all the 4k-cycles in it. For any graph on n vertices, all cycles of length
up to log n can be found in polynomial time using the color coding method of Alon, Yuster
and Zwick [2]. By an algorithm of Birmelé et al. [4], listing all cycles in a graph requires
O(m +

∑
c∈C(G) |c|) time, where m is the number of edges and C(G) is the set of all cycles.

Hence, the permanental polynomial of a 4k-intercyclic bipartite graph can be computed in
polynomial time if the length of the largest 4k cycle is bounded by log n or if the number of
cycles is bounded by a polynomial in n.

We now discuss an application of Theorem 2.1 in constructing cospectral graphs. Recall
that two graphs G1 and G2 are said to be cospectral if they have the same characteristic
polynomial, that is, ϕ(G1, x) = ϕ(G2, x). Similarly, we say that they are per-cospectral if
they have the same permanental polynomial, that is, π(G1, x) = π(G2, x). Since ϕp(G, x) can
be recovered from ϕ(G, x), it follows from Corollary 2.4 that two C4k-free bipartite graphs
G1 and G2 are cospectral if and only if they are per-cospectral [5]. Next, we give a general
procedure to construct 4k-intercyclic bipartite graphs that are simultaneously cospectral as
well as per-cospectral. Let p be some polynomial. Then, corresponding to p, we define a
class of 4k-intercyclic bipartite graphs Gp = {G | f(G, x) = p} .

Theorem 2.5. Let G1, G2 ∈ Gp for some polynomial p. Then, G1 and G2 are cospectral if
and only if they are per-cospectral.

Proof. Write π(G1, x) = ϕp(G1, x)+f(G1, x), and π(G2, x) = ϕp(G2, x)+f(G2, x). But since
G1, G2 ∈ Gp, we have f(G1, x) = f(G2, x). Hence, π(G1, x)−π(G2, x) = ϕp(G1, x)−ϕp(G2, x).
By definition, ϕp(G1, x) = ϕp(G2, x) if and only if ϕ(G1, x) = ϕ(G2, x). Then, it follows that
ϕ(G1, x) = ϕ(G2, x) if and only if π(G1, x) = π(G2, x).

Three such classes of 4k-intercyclic bipartite graphs are given below.

1. The class of all C4k-free bipartite graphs. Let p = 0, then G0 = {G | f(G, x) = 0}. By
Corollary 2.4, every graph in this class is C4k-free.

2. The class of all bipartite graphs with exactly l C4’s and no other cycle such that G\C
is an edgeless graph for any cycle C, where l is some positive integer. Let p = 4lxn−4

for a given n and l, then G4lxn−4 = {G | f(G, x) = 4lxn−4}. By Theorem 2.1, we have∑
R∈C4k(G) ϕp(G\R, x) = lxn−4. Now the degree xn−4 is achieved in ϕp(G\R, x) only

when R is C4. Hence, there are l C4’s in G such that G\C is an edgeless graph for any
cycle C.

3. The class of all unicyclic bipartite graphs with a C4 such that any two graphs in this
class are cospectral after the removal of C4. This follows easily from Theorem 2.1.

For any such class Gp of 4k-intercyclic bipartite graphs, the permanental polynomial is not
any more useful than the characteristic polynomial in distinguishing them.
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