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Abstract

The Four point condition (abbreviated as 4PC) is a condition used to test if a given
distance matrix arises from shortest path distances on trees. From a tree T , Bapat and
Sivasubramanian defined a matrix Min4PCT based on this condition. They also gave
a basis B for the row space of Min4PCT and determined its Smith Normal Form. In
this paper, we consider the matrix Min4PCT [B,B] restricted to a basis B and give an
explicit inverse for it. It is known that the distance matrix DT of a tree T , is invertible
and that its inverse is a rank-one update of its scaled Laplacian. Our inverse has a
similar form and is a rank-one update of a Laplacian like matrix.

1 Introduction

In the field of Phylogenetics, one explores the evolutionary relationships among species and
studies a central concept of an evolutionary tree. This is a rooted tree structure where each
node corresponds to a species and an edge signifies an evolutionary connection between two
species, with the child node being considered as descending from its parent node. Typically,
a new vertex is represented as a child when a genetic mutation occurs within a species. Thus,
we denote species by nodes and connect by an edge all species obtained by mutation from
that node. By measuring quantities such as the frequency of alleles in a population (that
is, gene variations), it is possible to define a distance on this tree that quantifies the genetic
difference between two species.

Typically, one can measure and hence define a distance between any pair of species and
wants to determine the evolution tree which gives rise to these distances among its nodes.
Due to possible inaccuracies in distance measurement, we get approximate distances and it
is not obvious that an underlying tree exists for a given measured distance among pairs of
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vertices. Thus, our first aim after getting pairwise distances is to check if the distances arise
from some tree. Here, when we write distance between two vertices, we mean the distance
induced by the shortest path in the tree. For u, v ∈ V (T ), we denote the shortest path
distance between them as distT (u, v). Mathematically, our problem translates as follows:
given a finite set X with a metric dX on it, we want to determine whether there exists a
tree T and an isometric embedding ι : X → V (T ) where V (T ) is the vertex set of T with
dX(x, x

′) = distT (ι(x), ι(x
′)) for each x, x′ ∈ X.

A classical theorem in this subject, due to Buneman [5], characterizes shortest path
distances (that is metrics) derived from trees and is referred to as the four-point condition
(abbreviated henceforth as 4PC). The 4PC states that for any four elements w, x, y and z
from the given metric space (X, dX), among the three terms dX(x, y) + dX(z, w), dX(x, z) +
dX(y, w), and dX(x,w) + dX(y, z), the maximum value equals the second maximum value.
It is noteworthy that the 4PC is more stringent than the triangle inequality as the triangle
inequality can be derived by setting z = w. A metric dX on X which satisfies the 4PC also
known as additive, see Deza and Deza [6, page 16] and satisfies interesting properties. The
following result is known.

Theorem 1.1 (Zaretskii, 1965). Let dX be a metric on a finite, nonempty set X that satisfies
the 4PC. Then, there exists a unique weighted tree T whose leaves are precisely X, such that
the weighted tree distance on the leaves X equals dX .

Theorem 1.1 was initially proven by Zaretskii in 1965 [13] when dX had only integer
distances. Subsequently, in 1969, Pereira in [11] extended it to cover non-integer distances.
Independently, Buneman also gave a proof in [5] with no restriction on the distances. A
further generalization of Theorem 1.1 has been studied to the case when the set X is not
necessarily finite. In such cases, X might not be embeddable in a conventional tree, but is
instead embedded in a more general structure called an R-tree. For more details, see the
paper by Gómez and Mémoli [7]. Another generalization of the 4PC can be found in the
paper by Petrov and Salimov [12].

Buneman showed that distances arising from a tree T satisfy the 4PC and this result
motivates the definition of three matrices Min4PCT (see Bapat and Sivasubramanian [4]),
Avg4PCT (also called the 2-Steiner distance matrix, see Azimi and Sivasubramanian [2]) and
Max4PCT (see Azimi, Jana, Nagar and Sivasubramanian [1]). We describe these matrices
below.

Let T be a tree with vertex set V (T ) = [n], where [n] = {1, . . . , n}. Denote its distance
matrix as D = (distT (i, j))1≤i,j≤n. Let V2 be the set of 2-element subsets of V (T ). Note
that |V2| =

(
n
2

)
. We describe three

(
n
2

)
×

(
n
2

)
matrices each of whose rows and columns are

indexed by elements of V2.
The minimum-4PC matrix, average-4PC and maximum-4PC matrices are denoted as

Min4PCT , Avg4PCT and Max4PCT respectively. For X, Y ∈ V2 with X = {i, j} and
Y = {k, l}, the (X, Y )th entry of Min4PCT and Max4PCT are denoted as Min4PCT (X, Y )
and Max4PCT (X, Y ) respectively. The entry Min4PCT (X, Y ) of the Min4PCT matrix is
defined to be the minimum value of the three terms distT (i, j) + distT (k, l), distT (i, k) +
distT (j, l), and distT (i, l) + distT (j, k). An identical definition of Max4PCT can be given by
changing minimum to maximum in the previous sentence. The (X, Y )th entry of Avg4PCT
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is denoted as Avg4PCT (X, Y ) and is defined as Avg4PCT (X, Y ) = 1
2

(
Min4PCT (X, Y ) +

Max4PCT (X, Y )
)
.

2 4 5

3

1

T Min4PCT =



12 13 14 15 23 24 25 34 35 45

12 0 1 1 2 2 2 3 3 4 2
13 1 0 2 3 1 3 4 2 3 3
14 1 2 0 1 3 1 2 2 3 3
15 2 3 1 0 4 2 1 3 2 2
23 2 1 3 4 0 2 3 1 2 2
24 2 3 1 2 2 0 1 1 2 2
25 3 4 2 1 3 1 0 2 1 1
34 3 2 2 3 1 1 2 0 1 3
35 4 3 3 2 2 2 1 1 0 2
45 2 3 3 2 2 2 1 3 2 0


Figure 1: An example of the matrix Min4PCT for the tree T given on the left

Interestingly, in [2, Lemma 4] it is shown that Avg4PCT (X, Y ) is the Steiner distance
between X and Y . The Steiner distance dST(X, Y ) between the subsets X and Y of V (T ) is
defined as the number of edges in the smallest connected subtree of T that contains all the
vertices of X ∪ Y . It is noteworthy that when X = {x} and Y = {y}, the Steiner distance
betweenX and Y is the usual tree distance between x and y, that is, dST(X, Y ) = distT (x, y).
For further information about Steiner distances in graphs, we refer the readers to Mao’s
survey [10].

Bapat and Sivasubramanian in [4] studied the Min4PCT matrix for a tree T and determined
its rank, implicitly gave a basis for its row space and also determined its Smith Normal Form.
For a square matrix M and a subset B of its rows (and columns), denote by M [B,B] the
restriction of M to the entries in the rows and columns indexed by elements of B. The
following result about Min4PCT is implicit in the work of Bapat and Sivasubramanian.

Theorem 1.2 (Bapat and Sivasubramanian, 2020). Let T be a tree on n vertices with
the edge set E(T ). Then, rank(Min4PCT ) = n. Further, if f = {k, l} /∈ E(T ), then
Bf = E(T ) ∪ {f} is a basis of Min4PCT and

detMin4PCT [Bf , Bf ] = (−1)n−12n−2(n− 1)(dist(k, l)− 1)2.

If DT denotes the distance matrix of tree T on n vertices, the remarkable result of
Graham and Pollak [9] shows that det(DT ) = (−1)n−1(n − 1)2n−2 and hence when n > 1,
we have rank(DT ) = n. Apart from the paper by Graham and Pollak, we also refer the
reader to the book by Bapat [3, Chapter 8] for a proof of this result. Thus, we have
rank(DT ) = rank(Min4PCT ) = n. Further, if we take f = {k, l} with dist(k, l) = 2,
then by Theorem 1.2, we get detMin4PCT [Bf , Bf ] = detDT = (−1)n−12n−2(n − 1). Such
unexpected coincidences hint that there is more in the matrix Min4PCT than meets the eye.

In this short paper, we give the inverse of the matrix Mf = Min4PCT [Bf , Bf ] and observe
another similarity between the inverses of Mf and DT . Graham and Lovász in [8] showed for
a tree T that the inverse of DT is a rank-one update of its scaled Laplacian matrix. Their
result is the following.
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Theorem 1.3 (Graham and Lovász, 1978). Let T be a tree on n ≥ 2 vertices and let D
and L be its distance matrix and Laplacian respectively. Define the n × 1 column vector τ
by τ(v) = 2− deg(v) where deg(v) is the degree of vertex v in T . Then,

D−1 = −1

2
L+

1

2(n− 1)
ττ ⊺ (1.1)

Our main result of this paper (proved in Section 2) is the following similar inverse of
Mf = Min4PCT [Bf , Bf ] as a rank-one update of a Laplacian type matrix.

Theorem 1.4. Let T be a tree on n vertices. Suppose f = {k, ℓ} with dist(k, ℓ) = d > 1.
Then, there exists an n× n matrix Lf with zero row and column sums and an n× 1 column
vector τf such that

M−1
f = − 1

2(d− 1)
Lf +

1

2(n− 1)(d− 1)2
τfτ

⊺
f . (1.2)

2 Proof of Theorem 1.4

We start by looking at a principal submatrix of Mf and then define our Laplacian type
matrix Lf . We need the following Lemma from Bapat and Sivasubramanian [4, Lemma 3,
4]. Let J be the all-ones matrix of appropriate dimension, all of whose entries are 1 and
let I denote the identity matrix of appropriate dimension. Let 1 be a column vector of an
appropriate dimension all of whose components are 1. As the dimensions of the matrices
J, I and the vector 1 will be clear from the context, we take the liberty of mildly abusing
this notation.

Lemma 2.1 (Bapat and Sivasubramanian). Let T be a tree on n vertices. Let K =
Mf [E(T ), E(T )] be the submatrix of Mf restricted to the entries indexed by E(T ). Then,

K = 2(J − I) and 2K−1 = −I +
1

n− 2
J .

Let T be a tree on n vertices. Let f = {k, ℓ} /∈ E(T ) not be an edge of T and let
d = dist(k, ℓ) be the distance between the vertices k and ℓ in T . Let Bf = E(T ) ∪ {f}. Let
Ef denote the set of edges of T that are on the (unique) k, ℓ-path. Let Ec

f denote the set
of edges of T that are not on the k, ℓ-path. Define the n × 1 column vector τf in Rn with
entries indexed by Bf as follows

τf (e) =


d− 1 if e ∈ Ec

f ,

−(n− d− 2) if e ∈ Ef ,

n− 3 if e = f.

Lemma 2.2. Let T be a tree on n vertices. Suppose f = {k, ℓ} with dist(k, ℓ) = d > 1.
Then, we assert that 1⊺τf = 2(d− 1) and Mfτf = (n− 1)(d− 1)1.
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Proof. Partition the set Bf as Bf = Ec
f ⊔ Ef ⊔ {f} where ⊔ denotes a disjoint union. We

consider this partition as edges e on the k, ℓ path have the same τf (e) value and edges e not
on the k, ℓ path also have the same τf (e) value. With respect to this partition, τ ⊺f can be
written as

τ ⊺f =
[
(d− 1)1, −(n− d− 2)1, n− 3

]⊺
. (2.1)

Since |Ef | = d and |Ec
f | = n− d− 1, it follows that

1⊺τf = (n− d− 1)(d− 1)− d(n− d− 2) + n− 3 = 2(d− 1).

Further, note that with respect to the partition Bf = Ec
f ⊔Ef ⊔ {f}, the matrix Mf will be

Mf =


2(J − I) 2J (d+ 1)1

2J 2(J − I) (d− 1)1

(d+ 1)1⊺ (d− 1)1⊺ 0

 .

To see the last row and column of Mf , if e = {i, j}, it is simple to note that

Mf (e, f) =

{
d− 1 if e ∈ Ef ,

d+ 1 if e ̸∈ Ef .

We thus have

Mfτf =


2(J − I) 2J (d+ 1)1

2J 2(J − I) (d− 1)1

(d+ 1)1⊺ (d− 1)1⊺ 0




(d− 1)1

−(n− d− 2)1

n− 3


=

 2(d− 1)(n− d− 2)1− 2d(n− d− 2)1+ (d+ 1)(n− 3)1
2(d− 1)(n− d− 1)1− 2(n− d− 2)(d− 1)1+ (d− 1)(n− 3)1

(d+ 1)(d− 1)(n− d− 1)− d(d− 1)(n− d− 2)


= (n− 1)(d− 1)1.

Our proof is complete.

2.1 A Laplacian type matrix Lf

For a tree T with n vertices with f = {k, ℓ} /∈ E(T ), we define a symmetric matrix Lf with
rows and columns indexed by elements of Bf . Let E(T ) = {e1, . . . , en−1} and dist(k, ℓ) = d.
When i ̸= j, we define

Lf (ei, ej) =


0 if ei, ej ∈ Ec

f ,

−1 +
n− d

d− 1
if ei, ej ∈ Ef ,

−1 otherwise,

and Lf (f, ei) =

 1 if ei ∈ Ec
f ,

−n− d

d− 1
if ei ∈ Ef .
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We define the diagonal entries of Lf so that Lf has zero row and column sums. Therefore,
for g ∈ Bf , we have

Lf (g, g) =


d− 1 if g ∈ Ec

f ,
n− d

d− 1
+ d− 2 if g ∈ Ef ,

n− 1

d− 1
if g = f.

Remark 2.3. Recall the partition Bf = Ec
f ⊔Ef ⊔ {f}. With respect to this partition, the

matrix Lf can be written in block form as

Lf =


(d− 1)I −J 1

−J (d− 1)I + (q − 1)J −q1

1⊺ −q1⊺ 1 + q

 ,

where (d− 1)q = (n− d).

Lemma 2.4. Let T be a tree on n vertices and let f = {k, ℓ} with dist(k, ℓ) = d > 1. Then,
we have Lf1 = 0.

Proof. The proof is immediate from the definition of Lf .

Lemma 2.5. Let T be a tree on n vertices and let f = {k, ℓ} with dist(k, ℓ) = d > 1. Then

MfLf + 2(d− 1)I = 1τ ⊺f .

Proof. Once again, recall that Bf = Ec
f ⊔Ef ⊔ {f} and also recall (2.1). Using Remark 2.3,

we have

MfLf =


2(J − I) 2J (d+ 1)1

2J 2(J − I) (d− 1)1

(d+ 1)1⊺ (d− 1)1⊺ 0




(d− 1)I −J 1

−J (d− 1)I + (q − 1)J −q1

1⊺ −q1⊺ 1 + q

 ,

(2.2)
where (d− 1)q = (n− d).
Let N = MfLf + 2(d − 1)I. Since N is a 3 × 3 block matrix, we denote its blocks as the
(i, j)-th block where 1 ≤ i, j ≤ 3. For positive integers r, s and t, we will use the two easy
facts that Jr×sJs×t = sJr×t and 1r1

⊺
t = Jr×s.Clearly, the

(1, 1)-th block of N = 2(d− 1)(J − I)− 2dJ + (d+ 1)J + 2(d− 1)I = (d− 1)J, the

(1, 2)-th block of N = −2(n− d− 1)J + 2J + 2(d− 1)J + 2(q − 1)dJ − q(d+ 1)J

= −2(n− d− 1)J + q(d− 1)J = −(n− d− 2)J, and the

(1, 3)-th block of N = 2(n− d− 1)1− 21− 2qd1+ (d+ 1)(1 + q)1

= (2n− 3− d− qd+ q)1 = (n− 3)1.
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Similarly, by (2.2), we get the

(2, 1)-th block of N = 2(d− 1)J − 2dJ + 2J + (d− 1)J = (d− 1)J, the

(2, 2)-th block of N = −2(n− d− 1)J + 2(d− 1)(J − I) + 2(q − 1)dJ − 2(q − 1)J

− q(d− 1)J + 2(d− 1)I

= −2(n− 2d)J + (q − 2)(d− 1)J = −(n− d− 2)J, and the

(2, 3)-th block of N = 2(n− d− 1)1− 2qd1+ 2q1+ (d− 1)(1 + q)1

= 2(n− d− 1)1+ (d− 1)(1− q)1 = (n− 3)1.

Finally, using (2.2) again, we have the

(3, 1)-th block of N = (d+ 1)(d− 1)1⊺ − d(d− 1)1⊺ = (d− 1)1⊺, the

(3, 2)-th block of N = −(d+ 1)(n− d− 1)1⊺ + (d− 1)21⊺ + d(d− 1)(q − 1)1⊺

= −(n− d− 2)1⊺, and the

(3, 3)-th block of N = (d+ 1)(n− d− 1)− qd(d− 1) + 2(d− 1) = n− 3.

Hence, by (2.1), it follows that

MfLf + 2(d− 1)I =


(d− 1)J −(n− d− 2)J (n− 3)1

(d− 1)J −(n− d− 2)J (n− 3)1

(d− 1)1⊺ −(n− d− 2)1⊺ (n− 3)

 = 1τ ⊺f .

Our proof is complete.

We are now ready to prove Theorem 1.4.

Proof. (Of Theorem 1.4) By Lemmas 2.2 and 2.5, we have

Mf

(
−Lf +

1

(n− 1)(d− 1)
τfτ

⊺
f

)
= −MfLf + 1τ ⊺f = 2(d− 1)I.

This completes the proof.
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