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Abstract

For a tree T on even n vertices, we introduce a new n X n matrix, called the fictitious
matrix of T, which is denoted by F. We prove that T has a perfect matching if and
only if det(F) = £1. Using the eigenvalues of F', we also present a necessary and
sufficient condition for T" to have a perfect matching.

1 Introduction

Let G be a simple connected graph on n vertices 1,2,...,n and m edges ey, es, ..., e, with
the adjacency matrix A and the degree matrix D. The signless Laplacian @ of G is defined as
@ = D+ A. The vertex-edge incidence matriz M of G is the n x m matrix whose (i, j)-entry
is 1 if vertex 7 is incident with edge e; and 0 otherwise. We introduce a new n X n matrix F’
for G, called the fictitious matriz of G, whose (i, j)-entry is the product of the (i, j)-entry of
Q and (—1)409) where d(i, j) is the distance between vertices i and j in G.

A matching in G is a set of edges such that no two edges have a common vertex. A perfect
matching in G on n vertices, n being even, is a matching consisting of 7 edges. There are
several known necessary and sufficient conditions for a graph to have a perfect matching [3].
But there are no spectral conditions for a graph to have a perfect matching. In this article,
we investigate spectral conditions for a tree to have a perfect matching. In section 2, we find
the inverse of the fictitious matrix of a tree. In section 3, we study the connection between
perfect matchings in a tree and the fictitious matrix of the tree.
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Figure 1: The smallest asymmetric tree

2 The inverse of a fictitious matrix

First we note the following result for the signless Laplacian of a connected graph.

Theorem 2.1. [2, Theorem 2.1] The smallest eigenvalue of the signless Laplacian of a
connected graph is equal to 0 if and only if the graph is bipartite. In this case 0 is a simple
eigenvalue.

Now we consider an n x n matrix H whose rows and columns are indexed by the vertices
1,2,...,nof atree T and H = [h; | is defined in [1, page 901] as follows:

(—1)d69) {1 if i < j

hi':
7 n —1 ifi > .

(2.1)

Example 2.2. For the tree given in Figure 1,

1 -1 1 -1 1 -1 1
1 1 -1 -1 1 1 1
e
H=-| 1 -1 1 1 1 1 -1
o1 1 1 1 11

1 -1 1 1 1 1 -1
11 1 1 1 1 1

Theorem 2.3. Let T be a tree on n vertices with the fictitious matriz F. For the matriz H
defined in (2.1), we have HF = I,,.

Proof. Let F' = [f;;]. Suppose i,j € {1,...,n}. Then the (i, j)-entry of HF is given by

(HF)ij =Y hipfr;-
k=1
Case l.i=7

(HF);; = Z i fxi; = do math here =0

k=1
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Case 2. i #£ j
Without loss of generality, let i < 7.

(HF)ij =Y hirfr;
k=1

i—1 Jj—1 n
= Z hi,kfk,j + Z hz‘,kfk,j + Z hikakvj
k=1 k=i k=j

= do math here
=1.

Thus HF = I,. ]

Corollary 2.4. The fictitious matriz of a tree is invertible.

3 Fictitious matrix and perfect matchings

In this section we study the connection between perfect matchings in a tree and the fictitious
matrix of the tree.
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