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Abstract

For a tree T on even n vertices, we introduce a new n×n matrix, called the fictitious
matrix of T , which is denoted by F . We prove that T has a perfect matching if and
only if det(F ) = ±1. Using the eigenvalues of F , we also present a necessary and
sufficient condition for T to have a perfect matching.

1 Introduction

Let G be a simple connected graph on n vertices 1, 2, . . . , n and m edges e1, e2, . . . , em with
the adjacency matrix A and the degree matrix D. The signless Laplacian Q of G is defined as
Q = D+A. The vertex-edge incidence matrix M of G is the n×m matrix whose (i, j)-entry
is 1 if vertex i is incident with edge ej and 0 otherwise. We introduce a new n× n matrix F
for G, called the fictitious matrix of G, whose (i, j)-entry is the product of the (i, j)-entry of
Q and (−1)d(i,j) where d(i, j) is the distance between vertices i and j in G.

A matching in G is a set of edges such that no two edges have a common vertex. A perfect
matching in G on n vertices, n being even, is a matching consisting of n

2
edges. There are

several known necessary and sufficient conditions for a graph to have a perfect matching [3].
But there are no spectral conditions for a graph to have a perfect matching. In this article,
we investigate spectral conditions for a tree to have a perfect matching. In section 2, we find
the inverse of the fictitious matrix of a tree. In section 3, we study the connection between
perfect matchings in a tree and the fictitious matrix of the tree.
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Figure 1: The smallest asymmetric tree

2 The inverse of a fictitious matrix

First we note the following result for the signless Laplacian of a connected graph.

Theorem 2.1. [2, Theorem 2.1] The smallest eigenvalue of the signless Laplacian of a
connected graph is equal to 0 if and only if the graph is bipartite. In this case 0 is a simple
eigenvalue.

Now we consider an n×n matrix H whose rows and columns are indexed by the vertices
1, 2, . . . , n of a tree T and H = [hi,j] is defined in [1, page 901] as follows:

hi,j =
(−1)d(i,j)

n

{
1 if i ≤ j

−1 if i > j.
(2.1)

Example 2.2. For the tree given in Figure 1,

H =
1

7



1 −1 1 −1 1 −1 1
1 1 −1 −1 1 1 1
1 1 1 1 −1 1 −1
1 −1 1 1 1 1 −1
−1 1 1 1 1 1 1

1 −1 1 1 1 1 −1
−1 1 1 1 1 1 1


.

Theorem 2.3. Let T be a tree on n vertices with the fictitious matrix F . For the matrix H
defined in (2.1), we have HF = In.

Proof. Let F = [fi,j]. Suppose i, j ∈ {1, . . . , n}. Then the (i, j)-entry of HF is given by

(HF )i,j =
n∑

k=1

hi,kfk,j.

Case 1. i = j

(HF )i,i =
n∑

k=1

hi,kfk,i = do math here = 0
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Case 2. i 6= j
Without loss of generality, let i < j.

(HF )i,j =
n∑

k=1

hi,kfk,j

=
i−1∑
k=1

hi,kfk,j +

j−1∑
k=i

hi,kfk,j +
n∑

k=j

hi,kfk,j

= do math here

= 1.

Thus HF = In.

Corollary 2.4. The fictitious matrix of a tree is invertible.

3 Fictitious matrix and perfect matchings

In this section we study the connection between perfect matchings in a tree and the fictitious
matrix of the tree.

· · ·

· · ·

· · ·
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